2,163 research outputs found

    An adaptive finite element method for the infinity Laplacian

    Get PDF
    We construct a finite element method (FEM) for the infinity Laplacian. Solutions of this problem are well known to be singular in nature so we have taken the opportunity to conduct an a posteriori analysis of the method deriving residual based estimators to drive an adaptive algorithm. It is numerically shown that optimal convergence rates are regained using the adaptive procedure

    Time dependent action in ϕ6\phi^6 potential

    Full text link
    The false vacuum decay in field theory from a coherently oscillating initial state is studied for ϕ6\phi^6 potential. An oscillating bubble solution is obtained. The instantaneous bubble nucleation rate is calculated.Comment: 15 pages, Accepted for publication in Communications in Theoretical Physics. arXiv admin note: text overlap with arXiv:hep-th/960415

    Distribution of spectral weight in a system with disordered stripes

    Full text link
    The ``band-structure'' of a disordered stripe array is computed and compared, at a qualitative level, to angle resolved photoemission experiments on the cuprate high temperature superconductors. The low-energy states are found to be strongly localized transverse to the stripe direction, so the electron dynamics is strictly one-dimensional (along the stripe). Despite this, aspects of the two dimensional band-structure Fermi surface are still vividly apparent.Comment: 10 pages, 11 figure

    Three-dimensional parton distribution functions g1Tg_{1T} and h1Lh_{1L}^\perp in the polarized proton-antiproton Drell-Yan process

    Full text link
    We present predictions of the unweighted and weighted double spin asymmetries related to the transversal helicity distribution g1Tg_{1T} and the longitudinal transversity distribution h1Lh_{1L}^\perp, two of eight leading-twist transverse momentum dependent parton distributions (TMDs) or three-dimensional parton distribution functions (3dPDFs), in the polarized proton-antiproton Drell-Yan process at typical kinematics on the Facility for Antiproton and Ion Research (FAIR). We conclude that FAIR is ideal to access the new 3dPDFs towards a detailed picture of the nucleon structure.Comment: 6 latex pages, 5 figures, version for publication in EPJ

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin(2ϕϕS)\sin(2\phi-\phi_S), sin(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction at the current fragmentation

    Full text link
    It is shown that the recent HERMES data on the transverse Λ0\Lambda^0 polarization in the inclusive quasi-real photoproduction at xF>0x_F>0 can be accommodated by the strange quark scattering model. Relations with the quark recombination approach are discussed.Comment: 5 pages, 3 figures, accepted by Eur. Phys. J.

    On velocity-dependent dark matter annihilations in dwarf satellites

    Get PDF
    Milky Way dwarf spheroidal satellites are a prime target for Dark Matter (DM) indirect searches. Recently the importance of possible long-range interactions has been recognized, as they can boost the expected DM gamma ray signal by orders of magnitude through an effect commonly known as the Sommerfeld enhancement. However, for such analyses precise modelling of DM phase-space distribution becomes crucial and can introduce large uncertainties in the final result. We provide a pioneering attempt towards a comprehensive investigation of these systematics. First, the DM halo profiles are constrained using Bayesian inference on the available stellar kinematic datasets with a careful treatment of observational and theoretical uncertainties. We consider both cuspy and cored parametric DM density profiles, together with the case of a non-parametric halo modelling directly connected to observable quantities along the line-of-sight. After reconsidering the study case of ergodic systems, the basic ingredient of all previous analyses, we investigate for the first time scenarios where DM particles are allowed to have anisotropic velocity distributions. Referring to a generalized J-factor, sensitive to velocity-dependent effects, an enhancement (suppression) with respect to the isotropic phase-space distributions is obtained for the case of tangentially (radially) biased DM particle orbits. We provide new estimates for J-factors for the eight brightest Milky Way dwarfs also in the limit of velocity-independent DM annihilation, in good agreement with previous results in literature, and derive data-driven lower-bounds based on the non-parametric modelling of the halo density. This work presents a state-of-the-art analysis of the aforementioned effects and falls within the interest of current and future experimental collaborations involved in DM indirect detection programs

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136
    corecore