161 research outputs found
Tailoring the Spectra of White Organic Light-Emitting Devices by Trap Effect of a Concentration-Insensitive Dopant
Highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by using a novel iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C2′]iridium(III) (acetylacetonate) [(tbpbt)2Ir(acac)], as the emitter. With a wide doping ratio ranging from 15 wt% to 25 wt%, the PhOLEDs maintained a comparable high performance, indicating concentration-insensitive property of the (tbpbt)2Ir(acac). On the basis of the unique characteristic of concentration insensitivity, the application of this phosphor was explored by fabricating white organic light-emitting devices (WOLEDs) with altered doping ratio, indicating that trap effect of (tbpbt)2Ir(acac) could effectively tailor WOLEDs spectra. Typically, a high-power efficiency, current efficiency, and external quantum efficiency of 30.0 lm/W, 38.8 cd/A, 18.1%, were achieved by 20 wt% doped WOLEDs
Nitrogen-doped porous carbon nanofibers embedded with Cu/Cu<sub>3</sub>P heterostructures as multifunctional current collectors for stabilizing lithium anodes in lithium-sulfur batteries
Among the various beyond-lithium-ion battery systems, lithium-sulfur batteries (Li-S) have been widely considered as one of the most promising technologies owing to their high theoretical energy density. However, the irregular Li plating/stripping and infinite volume change associated with low Coulombic efficiency and safety concerns of host-less lithium anode hinder the practical application of Li-S batteries. Herein, Cu/Cu3P heterostructure-embedded in carbon nanofibers (Cu/Cu3P-N-CNFs) are developed as multifunctional current collectors for regular lithium deposition. The 3D porous interconnected carbon skeleton endows effectively reduced local current density and volume expansion, meanwhile the Cu/Cu3P particles function as nucleation sites for uniform lithium plating. Consequently, the developed ion/electron-conducting skeleton delivers remarkable electrochemical performances in terms of high Coulombic efficiency for 500 cycles at 1 mA cm−2, and the accordingly symmetric cell exhibits long-term cyclic duration over 1500 h with a low voltage hysteresis of ∼ 80 mV at 1 mA cm−2. Moreover, Li-S full cells paired with the developed anode and S@CNTs cathode also show superior rate capability (568 mAh/g at 2C) and excellent stability of >500 cycles at 0.2C, further demonstrating the great potential of Cu/Cu3P-N-CNFs as promising current collectors for advanced lithium-metal batteries.</p
Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC
Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance
Lattice-contraction triggered synchronous electrochromic actuator.
Materials with synchronous capabilities of color change and actuation have prospects for application in biomimetic dual-stealth camouflage and artificial intelligence. However, color/shape dual-responsive devices involve stimuli that are difficult to control such as gas, light or magnetism, and the devices show poor coordination. Here, a flexible composite film with electrochromic/actuating (238° bending angle) dual-responsive phenomena, excellent reversibility, high synchronization, and fast response speed (< 5 s) utilizes a single active component, W18O49 nanowires. From in situ synchrotron X-ray diffraction, first principles calculations/numerical simulations, and a series of control experiments, the actuating mechanism for macroscopic deformation is elucidated as pseudocapacitance-based reversible lattice contraction/recovery of W18O49 nanowires (i.e. nanostructure change at the atomic level) during lithium ion intercalation/de-intercalation. In addition, we demonstrate the W18O49 nanowires in a solid-state ionic polymer-metal composite actuator that operates stably in air with a significant pseudocapacitive actuation
Factors Affecting the Damping Capacity of TiC Particle Reinforced Zinc-22 Aluminum Composites
Damping behavior of eutectoid zinc-aluminum composites was studied in the 25 to 330°C temperature range using a low-frequency torsion pendulum. In this study the internal friction was affected by changes in microstructure and by the amount of cold work prior to testing. The highest damping was obtained for a composite with 15% titanium carbide (TiC) particles, a fine lamellar microstructure, and after being cold worked 20%. A high-temperature (HT) internal friction peak at a temperature just below the eutectoid transformation temperature was observed in the composite materials, and in the annealed base alloys cold worked prior to testing. The authors believe this HT peak is associated with recrystallization of the matrix prior to the eutectoid transformation
- …