2,048 research outputs found

    Refraction of Electromagnetic Energy for Wave Packets Incident on a Negative Index Medium is Always Negative

    Full text link
    We analyze refraction of electromagnetic wave packets on passing from an isotropic positive to an isotropic negative refractive index medium. We definitively show that in all cases the energy is always refracted negatively. For localized wave packets, the group refraction is also always negative.Comment: 5 pages, 3 figure

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables

    Poisson-Lie group of pseudodifferential symbols

    Full text link
    We introduce a Lie bialgebra structure on the central extension of the Lie algebra of differential operators on the line and the circle (with scalar or matrix coefficients). This defines a Poisson--Lie structure on the dual group of pseudodifferential symbols of an arbitrary real (or complex) order. We show that the usual (second) Benney, KdV (or GL_n--Adler--Gelfand--Dickey) and KP Poisson structures are naturally realized as restrictions of this Poisson structure to submanifolds of this ``universal'' Poisson--Lie group. Moreover, the reduced (=SL_n) versions of these manifolds (W_n-algebras in physical terminology) can be viewed as subspaces of the quotient (or Poisson reduction) of this Poisson--Lie group by the dressing action of the group of functions. Finally, we define an infinite set of functions in involution on the Poisson--Lie group that give the standard families of Hamiltonians when restricted to the submanifolds mentioned above. The Poisson structure and Hamiltonians on the whole group interpolate between the Poisson structures and Hamiltonians of Benney, KP and KdV flows. We also discuss the geometrical meaning of W_\infty as a limit of Poisson algebras W_\epsilon as \epsilon goes to 0.Comment: 64 pages, no figure

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Electronic and Magnetic Properties of Nanographite Ribbons

    Full text link
    Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field are investigated by using a tight binding model. One of the most remarkable features of these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in magnetic field, generating a rational fraction of the magnetic flux (\phi= p/q) in each hexagonal plaquette of the graphite plane, behaves like a zero-field edge state with q internal degrees of freedom. The orbital diamagnetic susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents, which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility is scaled as a function of the temperature, Fermi energy and ribbon width. Because the edge states lead to a sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like temperature dependence of the Pauli paramagnetic susceptibility. Hence, it is shown that the crossover from high-temperature diamagnetic to low-temperature paramagnetic behavior of the magnetic susceptibility of nanographite ribbons with zigzag edges.Comment: 13 pages including 19 figures, submitted to Physical Rev

    Solitary wave solution to the generalized nonlinear Schrodinger equation for dispersive permittivity and permeability

    Full text link
    We present a solitary wave solution of the generalized nonlinear Schrodinger equation for dispersive permittivity and permeability using a scaling transformation and coupled amplitude-phase formulation. We have considered the third-order dispersion effect (TOD) into our model and show that soliton shift may be suppressed in a negative index material by a judicious choice of the TOD and self-steepening parameter.Comment: 6 page

    Basis Functions for Linear-Scaling First-Principles Calculations

    Full text link
    In the framework of a recently reported linear-scaling method for density-functional-pseudopotential calculations, we investigate the use of localized basis functions for such work. We propose a basis set in which each local orbital is represented in terms of an array of `blip functions'' on the points of a grid. We analyze the relation between blip-function basis sets and the plane-wave basis used in standard pseudopotential methods, derive criteria for the approximate equivalence of the two, and describe practical tests of these criteria. Techniques are presented for using blip-function basis sets in linear-scaling calculations, and numerical tests of these techniques are reported for Si crystal using both local and non-local pseudopotentials. We find rapid convergence of the total energy to the values given by standard plane-wave calculations as the radius of the linear-scaling localized orbitals is increased.Comment: revtex file, with two encapsulated postscript figures, uses epsf.sty, submitted to Phys. Rev.

    Towards a Linear-Scaling DFT Technique: The Density Matrix Approach

    Full text link
    A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in detail. The method is based on a formulation of density functional theory in which the ground state energy is determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of the latter lie in the range [0,1]. Linear-scaling behavior is achieved by requiring that the density matrix should vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is imposed by the method of Li, Nunes and Vanderbilt. The scheme is implemented by calculating all terms in the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method. Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix is increased. A discussion of the relation between the present method and other linear-scaling methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure

    Charming penguins in B => K* pi, K (rho,omega,phi) decays

    Full text link
    We evaluate the decays B => K* pi, K (rho,omega,phi) adding the long distance charming penguin contributions to the short distance: Tree+Penguin amplitudes. We estimate the imaginary part of the charming penguin by an effective field theory inspired by the Heavy Quark Effective Theory and parameterize its real part. The final results for branching ratios depend on only two real parameters and show a significant role of the charming penguins. The overall agreement with the available experimental data is satisfactory.Comment: 13 pages, 1 figur
    • …
    corecore