75,569 research outputs found
Phase Coexistence of Complex Fluids in Shear Flow
We present some results of recent calculations of rigid rod-like particles in
shear flow, based on the Doi model. This is an ideal model system for
exhibiting the generic behavior of shear-thinning fluids (polymer solutions,
wormlike micelles, surfactant solutions, liquid crystals) in shear flow. We
present calculations of phase coexistence under shear among weakly-aligned
(paranematic) and strongly-aligned phases, including alignment in the shear
plane and in the vorticity direction (log-rolling). Phase coexistence is
possible, in principle, under conditions of both common shear stress and common
strain rate, corresponding to different orientations of the interface between
phases. We discuss arguments for resolving this degeneracy. Calculation of
phase coexistence relies on the presence of inhomogeneous terms in the
dynamical equations of motion, which select the appropriate pair of coexisting
states. We cast this condition in terms of an equivalent dynamical system, and
explore some aspects of how this differs from equilibrium phase coexistence.Comment: 16 pages, 10 figures, submitted to Faraday Discussion
Recommended from our members
Laser-assisted photothermal imprinting of nanocomposite
We report on a laser-assisted photothermal imprinting method for directly patterning carbon
nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state
Nd:YAG laser (10 ns pulse, 532 nm and 355 nm wavelengths) is used to melt/soften a thin skin
layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro-sized surface
relief structures is pressed against the surface of the composite. Successful pattern transfer is
realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam,
the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy
and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is
partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz
mold.Mechanical Engineerin
The Static Dielectric Constant of a Colloidal Suspension
We derive an expression for the static dielectric constant of the colloidal
susp ensions based on the electrokinetic equations. The analysis assumes that
the ions have the same diffusivity, and that the double layer is much thinner
than the radius of curvature of the particles. It is shown that the dielectric
increment of the double layer polarization mechanism is originated from the
free energy stored in the salt concentration inhomogeniety. We also show that
the dominant polarization charges in the theory are at the electrodes, rather
than close to the particles.Comment: 15 pages, 1 figur
Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer
A scheme for linear optical implementation of fault-tolerant quantum
computation is proposed, which is based on an error-detecting code. Each
computational step is mediated by transfer of quantum information into an
ancilla system embedding error-detection capability. Photons are assumed to be
subjected to both photon loss and depolarization, and the threshold region of
their strengths for scalable quantum computation is obtained, together with the
amount of physical resources consumed. Compared to currently known results, the
present scheme reduces the resource requirement, while yielding a comparable
threshold region.Comment: 9 pages, 7 figure
Determination of activation volumes of reversal in perpendicular media
We discuss a method for the determination of activation volumes of reversal in perpendicular media. This method does not require correction for the self-demagnetizing field normally associated with these media. This is achieved by performing time dependence measurements at a constant level of magnetization. From the difference in time taken for the magnetization to decay to a fixed value at two fields-separated by a small increment DeltaH, the activation volume can be determined. We report data for both CoCrPt alloy films and a multilayer film, typical of those materials under consideration for use as perpendicular media. We find activation volumes that are consistent with the hysteresis curves of the materials. The activation volume scales qualitatively with the exchange coupling. The alloy films have significantly lower activation volumes, implying that they would be capable of supporting a higher data density
Metallic behaviour of carrier-polarized C molecular layers: Experiment and Theory
Although C is a molecular crystal with a bandgap E of ~2.5 eV, we
show that E is strongly affected by injected charge. In sharp contrast to
the Coulomb blockade typical of quantum dots, E is {\it reduced} by the
Coulomb effects. The conductance of a thin C layer sandwiched between
metal (Al, Ag, Au, Mg and Pt) contacts is investigated. Excellent Ohmic
conductance is observed for Al electrodes protected with ultra-thin LiF layers.
First-principles calculations, Hubbard models etc., show that the energy gap of
C is dramatically reduced when electrons hop from C to
C.Comment: 4 PRL style pages, 2 figures. email: [email protected]
- …