161 research outputs found

    Synaptic Targeting and Function of SAPAPs Mediated by Phosphorylation-Dependent Binding to PSD-95 MAGUKs

    Get PDF
    The PSD-95/SAPAP/Shank complex functions as the major scaffold in orchestrating the formation and plasticity of the post-synaptic densities (PSDs). We previously demonstrated that the exquisitely specific SAPAP/Shank interaction is critical for Shank synaptic targeting and Shank-mediated synaptogenesis. Here, we show that the PSD-95/SAPAP interaction, SAPAP synaptic targeting, and SAPAP-mediated synaptogenesis require phosphorylation of the N-terminal repeat sequences of SAPAPs. The atomic structure of the PSD-95 guanylate kinase (GK) in complex with a phosphor-SAPAP repeat peptide, together with biochemical studies, reveals the molecular mechanism underlying the phosphorylation-dependent PSD-95/SAPAP interaction, and it also provides an explanation of a PSD-95 mutation found in patients with intellectual disabilities. Guided by the structural data, we developed potent non-phosphorylated GK inhibitory peptides capable of blocking the PSD-95/SAPAP interaction and interfering with PSD-95/SAPAP-mediated synaptic maturation and strength. These peptides are genetically encodable for investigating the functions of the PSD-95/SAPAP interaction in vivo. Using structural biology, cell biology, and electrophysiology approaches, Zhu et al. demonstrate that phosphorylation of the N-terminal repeating sequences of SAPAPs is required for the SAPAP/PSD-95 complex formation and SAPAP's synaptic targeting and maturation functions. They also developed a potent non-phosphorylated PSD-95 GK inhibitory peptide that can effectively disrupt the SAPAP/PSD-95 complex formation and thus inhibit excitatory synaptic activities. Keywords: GK domain; PSD-95; SAPAP; MAGUK; postsynaptic density; synaptic scaffold proteins; synaptogenesis; synaptic plasticit

    Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons

    Get PDF
    The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks

    Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity

    Get PDF
    α-synuclein (α-syn) is a main component of Lewy bodies (LB) that occur in many neurodegenerative diseases, including Parkinson's disease (PD), dementia with LB (DLB) and multi-system atrophy. α-syn mutations or amplifications are responsible for a subset of autosomal dominant familial PD cases, and overexpression causes neurodegeneration and motor disturbances in animals. To investigate mechanisms for α-syn accumulation and toxicity, we studied a mouse model of lysosomal enzyme cathepsin D (CD) deficiency, and found extensive accumulation of endogenous α-syn in neurons without overabundance of α-syn mRNA. In addition to impaired macroautophagy, CD deficiency reduced proteasome activity, suggesting an essential role for lysosomal CD function in regulating multiple proteolytic pathways that are important for α-syn metabolism. Conversely, CD overexpression reduces α-syn aggregation and is neuroprotective against α-syn overexpression-induced cell death in vitro. In a C. elegans model, CD deficiency exacerbates α-syn accumulation while its overexpression is protective against α-syn-induced dopaminergic neurodegeneration. Mutated CD with diminished enzymatic activity or overexpression of cathepsins B (CB) or L (CL) is not protective in the worm model, indicating a unique requirement for enzymatically active CD. Our data identify a conserved CD function in α-syn degradation and identify CD as a novel target for LB disease therapeutics

    Chk1 Inhibition Ameliorates Alzheimer's Disease Pathogenesis and Cognitive Dysfunction Through CIP2A/PP2A Signaling

    Get PDF
    Alzheimer's disease (AD) is the most common neurodegenerative disease with limited therapeutic strategies. Cell cycle checkpoint protein kinase 1 (Chk1) is a Ser/Thr protein kinase which is activated in response to DNA damage, the latter which is an early event in AD. However, whether DNA damage-induced Chk1 activation participates in the development of AD and Chk1 inhibition ameliorates AD-like pathogenesis remain unclarified. Here, we demonstrate that Chk1 activity and the levels of protein phosphatase 2A (PP2A) inhibitory protein CIP2A are elevated in AD human brains, APP/PS1 transgenic mice, and primary neurons with A beta treatment. Chk1 overexpression induces CIP2A upregulation, PP2A inhibition, tau and APP hyperphosphorylation, synaptic impairments, and cognitive memory deficit in mice. Moreover, Chk1 inhibitor (GDC0575) effectively increases PP2A activity, decreases tau phosphorylation, and inhibits A beta overproduction in AD cell models. GDC0575 also reverses AD-like cognitive deficits and prevents neuron loss and synaptic impairments in APP/PS1 mice. In conclusion, our study uncovers a mechanism by which DNA damage-induced Chk1 activation promotes CIP2A-mediated tau and APP hyperphosphorylation and cognitive dysfunction in Alzheimer's disease and highlights the therapeutic potential of Chk1 inhibitors in AD

    Promising targets of cell death signaling of NR2B receptor subunit in stroke pathogenesis

    Get PDF
    Stroke is an acute cerebrovascular disease caused by acute brain artery bursting or cerebral embolism that leads to neuronal death and severe dysfunction of synaptic transmission. Neuronal damage after stroke remains a major cause of morbidity and mortality worldwide and affects 795 000 of lives every year in United States. However, effective treatments remain lacking, which makes the identification of new therapeutic targets a matter of great importance. N-methyl-D-aspartate glutamate (NMDA) receptor is important both in the normal synaptic transmission and in the neuronal death after stroke. Accumulated evidences show NMDA receptor downstream effectors, such as PSD-95, DAPK1, and ERK, had been revealed to be linked with neuronal damage. Based on our recent studies, we review the promising targets of the NMDA receptor downstream signaling involved in stroke treatment. This review will provide the concept of NR2B downstream signaling in neuronal death after stroke and provide evidences for developing better NMDAR-based therapeutics by targeting downstream proteins

    Thermal Diffusion Characteristics in Permafrost during the Exploitation of Gas Hydrate

    No full text
    Methane hydrate is the vast potential resources of natural gas in the permafrost and marine areas. Due to the occurrence of phase transition, the gas hydrate is dissociated into gas and water and absorbs lots of heat. The incomprehensive knowledge of endothermic reaction in permafrost sediments still restricted the production efficiency of hydrate commercial development. This endothermic reaction leads to a complex thermal diffusion in permafrost, which directly influences the phase transition in turn. In this research, the heat during the exploitation is transferred in two forms (specific heat and latent heat). Besides, the melting point is not constant but depends on the pore size of the reservoir rock. According to these features, a thermal diffusion model with phase transition is established. To calculate the governing equation, the pore size distribution is obtained by using the nuclear magnetic resonance (NMR) method. The heating tests are conducted and simulated to calibrate the coefficient (i.e., transverse surface relaxivity) of NMR. Then, the temperature field evolution of the hydrate reservoir during the exploitation is simulated by using the calibrated values. The results show that the temperature curves have a typical plateau related to the pore size distribution, which is effective to obtain the surface relaxivity. The heat transfer is remarkably limited by the endothermic effect of the phase transition. The hydrate recovery efficiency may depend largely on the heating capacity of the engineering operation and the rate of gas production. Compared to the conventional petroleum industry, it is significant to control the maximum temperature and temperature distribution in engineering operations during hydrate development. This research on the temperature behavior during onshore permafrost hydrate production could provide the theoretical support to control heat behavior of offshore hydrate production

    Effects of two types of waste wood species on the hydration characteristic of Portland cement

    No full text
    Despite much work on wood-cement composites, effects of wood species on the hydration of cements remain unclear until now. Thus, we herein investigated systematically effects of two typical wood species wastes on the hydration of Portland cement in this work. It was found that adding the poplar flour prominently affects the formation of the calcium silicate hydrate gel (C-S-H gel) delaying the hydration process, while the Chinese fir flour hardly retards the process due to different components. Compared with the neat cement, addition of both wood flours makes it easier to generate the ettringite. Besides, another important hydration product, calcium hydroxide Ca(OH)2, requires much longer time to form in the presence of both wood flours during hydration relative to the neat cement, e.g. nearly double time for the poplar-filled cement system. The findings provide useful information for extending the potential application of wood flours waste in cement composites
    corecore