599 research outputs found

    Pneumoconiosis rehabilitation station reduced the direct economic loss of patients in Chongqing

    Get PDF

    Ginsenoside induces apoptosis, autophagy and cell cycle arrest in gastric cancer cells by regulation of reactive oxygen species and activation of MAPK pathway

    Get PDF
    Purpose: To study the influence of ginsenoside on apoptosis, cell cycle and autophagy in gastric carcinoma (GC), and its effect on reactive oxygen species (ROS) levels and the mitogen-activated protein kinase (MAPK) pathway. Methods: Human gastric cancer cell line BGC-823 was randomly divided into the following groups: control, 100 μM ginsenoside (Rg5), 150 μM Rg5, and 200 μM Rg5 groups. Western blot assay was used to determine the expressions of autophagy-associated protein 12 (Atg12), Beclin-1, lc3b II, cycle-related protein, phosphated mitotic cyclin 25 homologous protein C (p-cdc25c), cyclin B1, and MAPK signaling pathway-related proteins. Results: There was significantly higher apoptosis in Rg5-treated BGC-823 cells than in untreated cells. Relative protein levels of Beclin-1, Atg5, Atg12, and lc3b II in BGC-823 cells in Rg5 groups were significantly and concentration-dependently up-regulated, relative to the corresponding expression levels in untreated cells. There were markedly up-regulated proteins of p-cdc25c, cyclin B1 and p-cdc2 in Rg5-exposed BGC-823 cells than in untreated cells, while CDC2 protein expression was significantly and concentration-dependently lower than that of control group (p < 0.05). Rg5 treatment resulted in marked and concentration-dependent increases in ROS levels in BGC-823 cells, relative to control cells (p < 0.05), whereas the expression levels of p-p38, p-JNK and p-ERK were significantly higher in Rg5-exposed cells than in unexposed cells (p < 0.05). Conclusion: Ginsenoside induces apoptosis, autophagy and cycle interruption in GC cells by regulating ROS production and activating MAPK pathway. Therefore, ginsenoside may be a promising agent for the management of gastric cancer. However, there is a need to conduct in vivo studies on the compound

    Chronically KIT-Stimulated Clonally-Derived Human Mast Cells Show Heterogeneity in Different Tissue Microenvironments

    Get PDF
    Human mast cell precursors arise in the bone marrow and circulate to different tissue microenvironments, where they develop distinct phenotypes that may be characterized by differential expression of the serine protease, chymase. The growth and development of mast cells is stimulated by mast cell growth factor, which is also known as kit ligand because its obligate receptor is KIT, the protein product of the c-KIT proto-oncogene. The in vivo influence of the KIT-kit ligand axis on the phenotype of human mast cells has not been determined. We used immunohistochemistry to detect in situ expression of tryptase and chymase by mast cells of a patient with urticaria pigmentosa and aggressive systemic mastocytosis, whose pathologic mast cells are clonally derived and chronically stimulated by KIT because they all contain the same point mutation causing constitutive activation of KIT. Mast cells in both spleen and skin expressed tryptase, but only in the skin did a majority of mast cells express chymase. We conclude that chronic stimulation of the KIT-kit ligand axis does not irrevocably commit mast cells to a chymase-positive or chymase-negative phenotype. These findings suggest that factors other than kit ligand predominate in determining mast cell phenotype

    Identification of Conserved and Novel MicroRNAs in Blueberry

    Get PDF
    MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in cells by negatively affecting gene expression at both transcriptional and post-transcriptional levels. There have been extensive studies aiming to identify miRNAs and to elucidate their functions in various plant species. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis identified 412 conserved miRNAs belonging to 29 families, and 35 predicted novel miRNAs that are likely to be unique to blueberries. Among them, expression profiles of five conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO) annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Particularly, anthocyanin biosynthesis has been predicted to be directly or indirectly regulated by diverse miRNA families. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening

    RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aromatic rice is popular worldwide because of its characteristic fragrance. Genetic studies and physical fine mapping reveal that a candidate gene (<it>fgr</it>/<it>OsBADH2</it>) homologous to <it>betaine aldehyde dehydrogenase </it>is responsible for aroma metabolism in fragrant rice varieties, but the direct evidence demonstrating the functions of <it>OsBADH2 </it>is lacking. To elucidate the physiological roles of <it>OsBADH2</it>, sequencing approach and RNA interference (RNAi) technique were employed to analyze allelic variation and functions of <it>OsBADH2 </it>gene in aroma production. Semi-quantitative, real-time reverse transcription-polymerase chain reaction (RT-PCR), as well as gas chromatography-mass spectrometry (GC-MS) were conducted to determine the expression levels of <it>OsBADH2 </it>and the fragrant compound in wild type and transgenic <it>OsBADH2</it>-RNAi repression lines, respectively.</p> <p>Results</p> <p>The results showed that multiple mutations identical to <it>fgr </it>allele occur in the 13 fragrant rice accessions across China; <it>OsBADH2 </it>is expressed constitutively, with less expression abundance in mature roots; the disrupted <it>OsBADH2 </it>by RNA interference leads to significantly increased 2-acetyl-1-pyrroline production.</p> <p>Conclusion</p> <p>We have found that the altered expression levels of <it>OsBADH2 </it>gene influence aroma accumulation, and the prevalent aromatic allele probably has a single evolutionary origin.</p

    PD_NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders

    Get PDF
    Background: Psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) are projected to lead the global disease burden within the next decade. Several lines of evidence suggest that epigenetic- or genetic-mediated dysfunction is frequently present in these disorders. To date, the inheritance patterns have been complicated by the problem of integrating epigenomic and transcriptomic factors that have yet to be elucidated. Therefore, there is a need to build a comprehensive database for storing epigenomic and transcriptomic data relating to psychiatric disorders. Description: We have developed the PD_NGSAtlas, which focuses on the efficient storage of epigenomic and transcriptomic data based on next-generation sequencing and on the quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The current release of the PD_NGSAtlas contains 43 DNA methylation profiles and 37 transcription profiles detected by MeDIP-Seq and RNA-Seq, respectively, in two distinct brain regions and peripheral blood of SZ, BP and non-psychiatric controls. In addition to these data that were generated in-house, we have included, and will continue to include, published DNA methylation and gene expression data from other research groups, with a focus on psychiatric disorders. A flexible query engine has been developed for the acquisition of methylation profiles and transcription profiles for special genes or genomic regions of interest of the selected samples. Furthermore, the PD_NGSAtlas offers online tools for identifying aberrantly methylated and expressed events involved in psychiatric disorders. A genome browser has been developed to provide integrative and detailed views of multidimensional data in a given genomic context, which can help researchers understand molecular mechanisms from epigenetic and transcriptional perspectives. Moreover, users can download the methylation and transcription data for further analyses. Conclusions: The PD_NGSAtlas aims to provide storage of epigenomic and transcriptomic data as well as quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The PD_NGSAtlas will be a valuable data resource and will enable researchers to investigate the pathophysiology and aetiology of disease in detail. The database is available at http://bioinfo.hrbmu.edu.cn/pd_ngsatlas/
    • …
    corecore