92 research outputs found

    On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump

    Full text link
    Optical parametric oscillation (OPO) in a microresonator is promising as an efficient and scalable approach to on-chip coherent visible light generation. However, so far only red light at < 420 THz (near the edge of the visible band) has been reported. In this work, we demonstrate on-chip OPO covering > 130 THz of the visible spectrum, including red, orange, yellow, and green wavelengths. In particular, using a pump laser that is scanned 5 THz in the near-infrared from 386 THz to 391 THz, the signal is tuned from the near-infrared at 395 THz to the visible at 528 THz, while the idler is tuned from the near-infrared at 378 THz to the infrared at 254 THz. The widest signal-idler separation we demonstrate of 274 THz corresponds to more than an octave span and is the widest demonstrated for a nanophotonic OPO to date. Our work is a clear demonstration of how nonlinear nanophotonics can transform light from readily accessible compact near-infrared lasers to targeted visible wavelengths of interest, which is crucial for field-level deployment of spectroscopy and metrology systems.Comment: 6 pages, 5 figure

    Silicon-chip source of bright photon pairs

    Get PDF
    Integrated quantum photonics relies critically on the purity, scalability, integrability, and flexibility of a photon source to support diverse quantum functionalities on a single chip. Here we report a chip-scale photon-pair source on the silicon-on-insulator platform that utilizes dramatic cavity-enhanced four-wave mixing in a high-Q silicon microdisk resonator. The device is able to produce high-quality photon pairs at different wavelengths with a high spectral brightness of 6.24×10^7 pairs/s/mW^2/GHz and photon-pair correlation with a coincidence-to-accidental ratio of 1386 ± 278 while pumped with a continuous-wave laser. The superior performance, together with the structural compactness and CMOS compatibility, opens up a great avenue towards quantum silicon photonics with capability of multi-channel parallel information processing for both integrated quantum computing and long-haul quantum communication

    A universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances

    Full text link
    Whispering-gallery microcavities have been used to realize a variety of efficient parametric nonlinear optical processes through the enhanced light-matter interaction brought about by supporting multiple high quality factor and small modal volume resonances. Critical to such studies is the ability to control the relative frequencies of the cavity modes, so that frequency matching is achieved to satisfy energy conservation. Typically this is done by tailoring the resonator cross-section. Doing so modifies the frequencies of all of the cavity modes, that is, the global dispersion profile, which may be undesired, for example, in introducing competing nonlinear processes.Here, we demonstrate a frequency engineering tool, termed multiple selective mode splitting (MSMS), that is independent of the global dispersion and instead allows targeted and independent control of the frequencies of multiple cavity modes. In particular, we show controllable frequency shifts up to 0.8 nm, independent control of the splitting of up to five cavity modes with optical quality factors ≳105\gtrsim 10^5, and strongly suppressed frequency shifts for untargeted modes. The MSMS technique can be broadly applied to a wide variety of nonlinear optical processes across different material platforms, and can be used to both selectively enhance processes of interestand suppress competing unwanted processes.Comment: 13 pages, 8 figure

    Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure.

    Get PDF
    Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF
    • …
    corecore