189 research outputs found

    Neutrino Mass Anarchy and the Universe

    Full text link
    We study the consequence of the neutrino mass anarchy on cosmology, in particular the total mass of neutrinos and baryon asymmetry through leptogenesis. We require independence of measure in each mass matrix elements in addition to the basis independence, which uniquely picks the Gaussian measure. A simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. We also discuss possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data.Comment: 13 pages, 9 figures; version published in JHE

    How to use the Standard Model effective field theory

    Full text link
    We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.Comment: 99 pages, 11 figures. V2: Typos corrected, references added. Fixed a link to Mathematica notebook for download. Substantial text changes for clarification with no change in results. In particular, sections 2.5, 3, and 5 received clarifying edits. Additionally, results from part of appendix A have been separated out to a new appendi

    Scale Anomalies, States, and Rates in Conformal Field Theory

    Full text link
    This paper presents two methods to compute scale anomaly coefficients in conformal field theories (CFTs), such as the c anomaly in four dimensions, in terms of the CFT data. We first use Euclidean position space to show that the anomaly coefficient of a four-point function can be computed in the form of an operator product expansion (OPE), namely a weighted sum of OPE coefficients squared. We compute the weights for scale anomalies associated with scalar operators and show that they are not positive. We then derive a different sum rule of the same form in Minkowski momentum space where the weights are positive. The positivity arises because the scale anomaly is the coefficient of a logarithm in the momentum space four-point function. This logarithm also determines the dispersive part, which is a positive sum over states by the optical theorem. The momentum space sum rule may be invalidated by UV and/or IR divergences, and we discuss the conditions under which these singularities are absent. We present a detailed discussion of the formalism required to compute the weights directly in Minkowski momentum space. A number of explicit checks are performed, including a complete example in an 8-dimensional free field theory.Comment: 39 pages, 7 figure
    • …
    corecore