10,471 research outputs found

    Micron-scale voltage and [Ca(2+)]i imaging in the intact heart

    Get PDF
    Studies in isolated cardiomyocytes have provided tremendous information at the cellular and molecular level concerning regulation of transmembrane voltage (Vm) and intracellular calcium ([Ca(2+)]i). The ability to use the information gleaned to gain insight into the function of ion channels and Ca(2+) handling proteins in a more complex system, e.g., the intact heart, has remained a challenge. We have developed laser scanning fluorescence microscopy-based approaches to monitor, at the sub-cellular to multi-cellular level in the immobilized, Langendorff-perfused mouse heart, dynamic changes in [Ca(2+)]i and Vm. This article will review the use of single- or dual-photon laser scanning microscopy [Ca(2+)]i imaging in conjunction with transgenic reporter technology to (a) interrogate the extent to which transplanted, donor-derived myocytes or cardiac stem cell-derived de novo myocytes are capable of forming a functional syncytium with the pre-existing myocardium, using entrainment of [Ca(2+)]i transients by the electrical activity of the recipient heart as a surrogate for electrical coupling, and (b) characterize the Ca(2+) handling phenotypes of cellular implants. Further, we will review the ability of laser scanning fluorescence microscopy in conjunction with a fast-response voltage-sensitive to resolve, on a subcellular level in Langendorff-perfused mouse hearts, Vm dynamics that typically occur during the course of a cardiac action potential. Specifically, the utility of this technique to measure microscopic-scale voltage gradients in the normal and diseased heart is discussed

    Efficacy of Gene Therapy Is Dependent on Disease Progression in Dystrophic Mice with Mutations in the FKRP Gene

    Get PDF
    Loss-of-function mutations in the Fukutin-related protein ( ) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) and other forms of congenital muscular dystrophy-dystroglycanopathy that are associated with glycosylation defects in the α-dystroglycan (α-DG) protein. Systemic administration of a single dose of recombinant adeno-associated virus serotype 9 (AAV9) vector expressing human to a mouse model of LGMD2I at various stages of disease progression was evaluated. The results demonstrate rescue of functional glycosylation of α-DG and muscle function, along with improvements in muscle structure at all disease stages versus age-matched untreated cohorts. Nevertheless, mice treated in the latter stages of disease progression revealed a decrease in beneficial effects of the treatment. The results provide a proof of concept for future clinical trials in patients with -related muscular dystrophy and demonstrate that AAV-mediated gene therapy can potentially benefit patients at all stages of disease progression, but earlier intervention would be highly preferred
    • …
    corecore