8,244 research outputs found

    Procurement innovation: perspectives from Chinese international construction companies

    Get PDF
    The international construction business is witnessing a trend that companies deliver projects through the adoption of innovative procurement systems (e.g. Building Operate Transfer, Public Private Partnership). By devising innovative procurement systems, it is possible to realise construction projects that are difficult for traditional procurement methods, to develop competitive advantages for companies, and ultimately, to deliver value to the society. Notably, Chinese companies are making impressive inroads into the international construction market through enhancing their competitiveness. However, little we know about how Chinese international construction companies (CICCs) perceive procurement innovation and how it relates to their recent success. This research aims to capture their perspectives towards procurement innovation by interviewing nine key decision-makers of CICCs and experts in this area. It is found that CICCs are gradually adopting procurement innovation as a competitive strategy. Unlike the traditional life-or-death competition, competing through procurement innovation can make more projects possible; the emergence of CICCs, in particular their strengths, can be encouraged to deliver more projects and value in the international construction market. This research not only provides CICCs with insights into the procurement innovations in the construction sector, but also enables other companies to know CICCs with which they might compete or collaborate in the near future.published_or_final_versio

    Sharpening Competitive Edge through Procurement Innovation: Perspectives from Chinese International Construction Companies

    Get PDF
    The international construction business is witnessing a trend towards the delivery of projects through the adoption of innovative procurement systems, which allow companies to gain competitive advantages and to potentially deliver enhanced value to society. Notably, Chinese companies are making steady inroads into the international construction market by enhancing competitiveness. However, we know little about the extent to which Chinese international construction companies (CICCs) perceive procurement innovation and how this factor may relate to their recent success. This research aims to fill the void based on interviews with nine CICC key decisionā€makers and experts in this area, and the capturing of their perspectives. It is found that CICCs are gradually adopting procurement innovation as a competitive strategy. Although procurement innovation is conducive to competitive advantage in the long run, CICCs have to pay the cost of entering the new market. Thus a ā€œwaitā€andā€seeā€ attitude exists in respect of a long term vision. Unlike the traditional winā€lose competitive bidding system, competing through procurement innovation can lead to larger, more suitable market presence. By succinctly describing the CICC story in the international market this research not only provides CICCs themselves with insights into current procurement innovations existing within the construction sector, but also enables other companies to understand the nature of CICCs with which they might compete or collaborate in the near future.postprin

    Design, fabrication, and experimental validation of novel flexible silicon-based dry sensors for electroencephalography signal measurements

    Full text link
    Ā© 2014 IEEE. Many commercially available electroencephalography (EEG) sensors, including conventional wet and dry sensors, can cause skin irritation and user discomfort owing to the foreign material. The EEG products, especially sensors, highly prioritize the comfort level during devices wear. To overcome these drawbacks for EEG sensors, this paper designs Societe Generale de Surveillance S A c(SGS)-certified, silicon-based dry-contact EEG sensors (SBDSs) for EEG signal measurements. According to the SGS testing report, SBDSs extract does not irritate skin or induce noncytotoxic effects on L929 cells according to ISO10993-5. The SBDS is also lightweight, flexible, and nonirritating to the skin, as well as capable of easily fitting to scalps without any skin preparation or use of a conductive gel. For forehead and hairy sites, EEG signals can be measured reliably with the designed SBDSs. In particular, for EEG signal measurements at hairy sites, the acicular and flexible design of SBDS can push the hair aside to achieve satisfactory scalp contact, as well as maintain low skin-electrode interface impedance. Results of this paper demonstrate that the proposed sensors perform well in the EEG measurements and are feasible for practical applications

    Phase structure of black branes in grand canonical ensemble

    Full text link
    This is a companion paper of our previous work [1] where we studied the thermodynamics and phase structure of asymptotically flat black pp-branes in a cavity in arbitrary dimensions DD in a canonical ensemble. In this work we study the thermodynamics and phase structure of the same in a grand canonical ensemble. Since the boundary data in two cases are different (for the grand canonical ensemble boundary potential is fixed instead of the charge as in canonical ensemble) the stability analysis and the phase structure in the two cases are quite different. In particular, we find that there exists an analog of one-variable analysis as in canonical ensemble, which gives the same stability condition as the rather complicated known (but generalized from black holes to the present case) two-variable analysis. When certain condition for the fixed potential is satisfied, the phase structure of charged black pp-branes is in some sense similar to that of the zero charge black pp-branes in canonical ensemble up to a certain temperature. The new feature in the present case is that above this temperature, unlike the zero-charge case, the stable brane phase no longer exists and `hot flat space' is the stable phase here. In the grand canonical ensemble there is an analog of Hawking-Page transition, even for the charged black pp-brane, as opposed to the canonical ensemble. Our study applies to non-dilatonic as well as dilatonic black pp-branes in DD space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded, references updated, typos corrected, published in JHEP 1105:091,201

    Single channel wireless EEG device for real-time fatigue level detection

    Full text link
    Ā© 2015 IEEE. Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments

    Performance Analysis of a Claw Pole PM Motor

    Full text link
    This paper presents the performance analysis of a three-phase three-stack permanent magnet (PM) claw pole motor by using an improved phase variable model, which has been developed for accurate and efficient performance simulation of PM brushless dc motors. The improved model can take into account the effect of magnetic saturation and rotor position dependence of key parameters including back electromagnetic force, winding inductance, cogging torque and core loss, which are obtained from time-stepping nonlinear magnetic field finite element analysis (FEA). The presented model has been implemented in Simulink environment and employed to simulate the dynamic and steady-state performance of the three-phase three-stack PM claw pole motor with soft magnetic composite stator. Parameter computation and performance simulation are validated by experiments on the motor prototype

    An inflatable and wearable wireless system for making 32-channel electroencephalogram measurements

    Full text link
    Ā© 2001-2011 IEEE. Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications

    A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors

    Full text link
    Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a sizeadjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions. Ā© 2014 IEEE

    Phase transitions and critical behavior of black branes in canonical ensemble

    Full text link
    We study the thermodynamics and phase structure of asymptotically flat non-dilatonic as well as dilatonic black branes in a cavity in arbitrary dimensions (DD). We consider the canonical ensemble and so the charge inside the cavity and the temperature at the wall are fixed. We analyze the stability of the black brane equilibrium states and derive the phase structures. For the zero charge case we find an analog of Hawking-Page phase transition for these black branes in arbitrary dimensions. When the charge is non-zero, we find that below a critical value of the charge, the phase diagram has a line of first-order phase transition in a certain range of temperatures which ends up at a second order phase transition point (critical point) as the charge attains the critical value. We calculate the critical exponents at that critical point. Although our discussion is mainly concerned with the non-dilatonic branes, we show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action discussed, references adde

    A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean

    Get PDF
    The Ediacaran Period was characterised by major carbon isotope perturbations. The most extreme of these, the āˆ¼570 Ma Shuram/DOUNCE (Doushantuo Negative Carbon isotope Excursion) anomaly, coincided with early radiations of benthic macrofauna linked to a temporary expansion in the extent of oxygenated seawater. Here we document an earlier negative excursion (the āˆ¼610 Ma WANCE (Weng'An Negative Carbon isotope Excursion)) anomaly in the Yangtze Gorges area, South China, that reached equally extreme carbon isotope values and was associated with a similar degree of environmental perturbation. Specifically, new uranium isotope data evidence a significant, but transient, shift towards more oxygenated conditions in tandem with decreasing carbon isotope values, while strontium and sulfur isotope data support an increase in continental weathering through the excursion. We utilize a biogeochemical modelling approach to demonstrate that the influx of such a weathering pulse into an organically-laden, largely anoxic ocean, fully reproduces each of these distinct isotopic trends. Our study directly supports the hypothesis that a large dissolved marine organic pool effectively buffered against widespread oxygenation of the marine environment through the Proterozoic Eon, and in doing so, substantially delayed the radiation of complex aerobic life on Earth
    • ā€¦
    corecore