1,410 research outputs found

    The Effect of Substituent on Molecules That Contain a Triple Bond Between Arsenic and Group 13 Elements: Theoretical Designs and Characterizations

    Get PDF
    The effect of substitution on the potential energy surfaces of RE13≡AsR (E13 = group 13 elements; R = F, OH, H, CH3, and SiH3) is determined using density functional theory (M06‐2X/Def2‐TZVP, B3PW91/Def2‐TZVP, and B3LYP/LANL2DZ+dp). The computational studies demonstrate that all triply bonded RE13≡AsR species prefer to adopt a bent geometry that is consistent with the valence electron model. The theoretical studies also demonstrate that RE13≡AsR molecules with smaller substituents are kinetically unstable, with respect to the intramolecular rearrangements. However, triply bonded R′E13≡AsR′ species with bulkier substituents (R′ = SiMe(SitBu3)2, SiiPrDis2, and NHC) are found to occupy the lowest minimum on the singlet potential energy surface, and they are both kinetically and thermodynamically stable. That is to say, the electronic and steric effects of bulky substituents play an important role in making molecules that feature an E13≡As triple bond as viable synthetic target

    Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley-spin

    Full text link
    Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy

    Triple Bonds between Bismuth and Group 13 Elements: Theoretical Designs and Characterization

    Get PDF
    The effect of substitution on the potential energy surfaces of RE13≡BiR (E13 = B, Al, Ga, In, and Tl; R = F, OH, H, CH3, SiH3, Tbt, Ar*, SiMe(SitBu3)2, and SiiPrDis2) is investigated using density functional theories (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ+dp). The theoretical results suggest that all of the triply bonded RE13≡BiR molecules prefer to adopt a bent geometry (i.e., ∠RE13Bi ≈ 180° and ∠E13BiR ≈ 90°), which agrees well with the bonding model (model (B)). It is also demonstrated that the smaller groups, such as R = F, OH, H, CH3, and SiH3, neither kinetically nor thermodynamically stabilize the triply bonded RE13≡BiR compounds, except for the case of H3SiB≡BiSiH3. Nevertheless, the triply bonded RʹE13≡BiRʹ molecules that feature bulkier substituents (Rʹ = Tbt, Ar*, SiMe(SitBu3)2, and SiiPrDis2) are found to have the global minimum on the singlet potential energy surface and are both kinetically and thermodynamically stable. In other words, both the electronic and the steric effects of bulkier substituent groups play an important role in making triply bonded RE13≡BiR (Group 13–Group 15) species synthetically accessible and isolable in a stable form

    Decadal Oscillation of Fall Temperature in Taiwan

    Full text link
    This study verifies the existence of an evident decadal oscillation in fall (September - November) temperature for Taiwan. It has an island-wide spatial pattern and a central frequency of 11 years. Acorresponding decadal-oscillation mode of tropical sea surface temperature (SST) is found to be largely responsible for inducing the decadal temperature oscillation for Taiwan via the following regulating processes. On a decadal timescale, periods of decadal warming in Taiwan concur with major cold anomalies in tropical SST over the eastern Indian Ocean and the central Pacific. These cold SST anomalies modulate tropical Walker circulation so as to produce anomalous descending centers in their regions. Meanwhile, the complementary anomalous ascending motion and anomalous low-level convergence center occur near the Maritime continent. These anomalous ascending and descending centers act as tropical forcing sources to evoke a low-level Rossby-wave-like circulation anomaly in the Asian-Pacific regions. Taiwan is surrounded by a low-level anomalous high to its east and an anomalous low to its west. These circulations induce anomalous flows from the south to warm Taiwan via anomalous warm advection. The above regulating processes reverse in polarity during periods of decadal cooling in Taiwan

    Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signalling in H9c2 rat cardiomyoblasts

    Get PDF
    Background: Epigallocatechin-3-gallate (EGCg) with its potent anti-oxidative capabilities is known for its beneficialeffects ameliorating oxidative injury to cardiac cells. Although studies have provided convincing evidence tosupport the cardioprotective effects of EGCg, it remains unclear whether EGCg affect trans-membrane signalling incardiac cells. Here, we have demonstrated the potential mechanism for cardioprotection of EGCg againstH2O2-induced oxidative stress in H9c2 cardiomyoblasts.Results: Exposing H9c2 cells to H2O2 suppressed cell viability and altered the expression of adherens and gapjunction proteins with increased levels of intracellular reactive oxygen species and cytosolic Ca2+. These detrimentaleffects were attenuated by pre-treating cells with EGCg for 30 min. EGCg also attenuated H2O2-mediated cell cyclearrest at the G1-S phase through the glycogen synthase kinase-3β (GSK-3β)/β-catenin/cyclin D1 signalling pathway.To determine how EGCg targets H9c2 cells, enhanced green fluorescence protein (EGFP) was ectopically expressedin these cells. EGFP-emission fluorescence spectroscopy revealed that EGCg induced dose-dependent fluorescencechanges in EGFP expressing cells, suggesting that EGCg signalling events might trigger proximity changes of EGFPexpressed in these cells.Proteomics studies showed that EGFP formed complexes with the 67 kD laminin receptor, caveolin-1 and -3,β-actin, myosin 9, vimentin in EGFP expressing cells. Using in vitro oxidative stress and in vivo myocardial ischemiamodels, we also demonstrated the involvement of caveolin in EGCg-mediated cardioprotection. In addition,EGCg-mediated caveolin-1 activation was found to be modulated by Akt/GSK-3β signalling in H2O2-induced H9c2cell injury.Conclusions: Our data suggest that caveolin serves as a membrane raft that may help mediate cardioprotectiveEGCg transmembrane signalling
    • …
    corecore