98 research outputs found

    Impact of capillary pressure on micro-fracture propagation pressure during hydraulic fracturing in shales: An analytical model

    Get PDF
    The presence of micro-fractures in shale reservoirs is vital for economic production. While a number of models have been proposed to predict the propagation pressure of pre-existing micro-fractures, few models have considered capillary pressure, which may play a significant role in the presence of micro-fractures with nano-scale width. In this study, a new model was developed to predict the propagation pressure of microfractures. It is assumed that pre-existing micro-fractures are arbitrarily intersected with the propagated hydraulic fractures. The model was derived based upon linear elastic fracture mechanics under the condition of mode I fracture propagation coupled with capillary pressure. Furthermore, this paper also conducted sensitivity analyses to predict the micro-fracture propagation pressure as a function of the contact angle, surface tension and the width of micro-fracture. The results demonstrated that decreasing the contact angle reduces the propagation pressure of micro-fractures, implying that a hydrophilic system may yield a lower fracture propagation pressure compared with the hydrophobic counterpart. Moreover, for a hydrophilic system, further decreasing the contact angle shifts the propagation pressure to a negative value, implying that the capillary pressure may induce the propagation of micro-fractures without external fluid injection. The propagation pressure is also affected by the surface tension and the width of micro-fracture.Document Type: Original articleCited as: Lu, Y., Jin, Y., Li, H. Impact of capillary pressure on micro-fracture propagation pressure during hydraulic fracturing in shales: An analytical model. Capillarity, 2023, 8(3): 45-52. https://doi.org/10.46690/capi.2023.09.0

    A 3D-printed sub-terahertz metallic surface-wave Luneburg lens multi-beam antenna

    Get PDF

    Evaluation of Anti-tumor and Chemoresistance-lowering Effects of Pectolinarigenin from Cirsium japonicum Fisch ex DC in Breast Cancer

    Get PDF
    Purpose: To investigate the antitumor and chemoresistance-lowering effects of pectolinarigenin on breast cancer cells.Methods: Pectolinarigenin was purified by a combination of silica gel and Sephadex LH-20 column chromatography from ethanol extracts of the aerial parts of C. japonicum DC. Breast cancer selfrenewal properties were tested by colony formation and tumor sphere formation assays. Thereafter, real-time polymerase chain reaction (PCR) was used to detect breast cancer stem cell markers. Furthermore, the effect of pectolinarigenin on breast cancer cell was evaluated by chemoresistance using 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Finally, tumor formation in nude mice was used to test the effect of pectolinarigenin on tumorigenicity of breast cancer cells in vivo.Results: The results showed that pectolinarigenin, extracted from Cirsium japonicum Fisch. ex DC., inhibited tumor cell self-renewal in MCF-7 breast cancer cells. Pectolinarigenin (25 μM) caused significant inhibition of colony formation (61.23 %, p < 0.001) and tumor sphere formation (59.49 %, p < 0.01) in MCF-7. The inhibitory effects were associated with changes in breast cancer stem cell markers. Treatment of breast cancer cells with pectolinarigenin reduced the chemoresistance of the cells to doxorubicin. At the same time, mRNA expression of chemoresistance genes (ATP binding cassette subfamily G member 2, ABCG2 and ATP binding cassette subfamily B member 1, MDR1) was repressed by pectolinarigenin. The inhibition efficiency of MDR1 and ABCG2 by 10 μM pectolinarigenin treatment was about 59.29 (p < 0.01) and 46.48 % (p < 0.01), respectively. Furthermore, pectolinarigenin reduced tumor mass in nude mice xenograft model.Conclusion: Pectolinarigenin inhibits breast cancer stem cell-like properties and lowers the chemoresistance of the cancer cells to chemotherapy. The results provide an insight into the mechanism of the anti-breast tumor effects and an experimental basis for the use of pectolinarigenin to enhance treatment of patients with breast cancer.Keywords: Pectolinarigenin, Cancer stem cells, Breast cancer, Chemoresistance, Cirsium japonicum Fisch. ex D

    Lithospheric electrical structure across the Bangong-Nujiang Suture in northern tibet revealed by magnetotelluric

    Get PDF
    Competing hypotheses have been proposed to explain the subduction polarity of the Bangong-Nujiang Tethyan Ocean and the formation of the high-conductivity anomaly beneath the Qiangtang terrane. However, the lithospheric architecture of the northern Tibetan Plateau is still poorly understood due to inhospitable environments and topography. Therefore, in the winter of 2021, a 440 km long, SN-trending broadband magnetotelluric (MT) profile was recorded in northern Tibet to detect its regional lithospheric structure. The nonlinear conjugate gradients algorithm is conducted to invert the individual TM mode data. A reliable 2D electrical model was obtained by ablation processing and analysis of broadband magnetotelluric data to test the lithospheric electrical structure and dynamics between the northern Lhasa and Qiangtang terranes. The inversion results reveal the lithospheric structure at a depth of 100 km in northern Tibet, which synthesizes geological, geochemical and deep seismic reflection evidence and firmly identifies that the trace of the south-dipping conductor mainly resulted from the southward subduction of the Bangong-Nujiang Tethyan Ocean under the Lhasa terrane and the trace of the north-dipping conductor likely due to the northward subduction of the Bangong-Nujiang Tethyan Ocean under the Qiangtang terrane. In addition, the magnetotelluric profile also images a high-conductivity lithospheric-scale anticline beneath the central Qiangtang terrane, which may correspond to the upwelling of postcollisional magmatism triggered by northward subduction of the Bangong-Nujiang Tethyan Ocean under the Qiangtang terrane, aqueous fluid and/or partial melting

    Modularised and Automated Platforms for Producing Liquid metal-particle Based Functional Composites

    No full text
    Functional metallic nanoparticles (NPs) and microparticles (MPs), as well as stretchable conductive composites (SCCs) made by using these particles as fillers have found widespread use in biosensors, energy, and robotics. To utilise these materials effectively, it is crucial to synthesise them on-demand with desired chemical and physical properties. However, most of the conventional methods for producing NPs/MPs and the corresponding SCCs rely on bulky and expensive equipment and generally need intricate operation with specific expertise, making it difficult for inexperienced researchers to take advantage of these materials. Such a threshold impedes researchers with different knowledge backgrounds from innovating and exploring new directions. To address this, modular and integrated systems have been developed. The major aim of the research is to develop modularised and automated platforms for producing micro and nanosized particles of low-melting-point alloys, such as gallium-based liquid metals, and to use the produced particles for making SCCs with tailored mechanical and electrical properties that enable applications in nanomedicine, wearable sensors, and robotics
    corecore