364 research outputs found

    Competition between the inter-valley scattering and the intra-valley scattering on magnetoconductivity induced by screened Coulomb disorder in Weyl semimetals

    Full text link
    Recent experiments on Weyl semimetals reveal that charged impurities may play an important role. We use a screened Coulomb disorder to model the charged impurities, and study the magneto-transport in a two-node Weyl semimetal. It is found that when the external magnetic field is applied parallel to the electric field, the calculated longitudinal magnetoconductivity shows positive in the magnetic field, which is just the negative longitudinal magnetoresistivity (LMR) observed in experiments. When the two fields are perpendicular to each other, the transverse magnetoconductivities are measured. It is found that the longitudinal (transverse) magnetoconductivity is suppressed (enhanced) sensitively with increasing the screening length. This feature makes it hardly to observe the negative LMR in Weyl semimetals experimentally owing to a small screening length. Our findings gain insight into further understanding on recently actively debated magneto-transport behaviors in Weyl semimetals. Furthermore we studied the relative weight of the inter-valley scattering and the intra-valley scattering. It shows that the former is as important as the latter and even dominates in the case of strong magnetic fields and small screening length. We emphasize that the discussions on inter-valley scattering is out of the realm of one-node model which has been studied.Comment: 14 pages, 5 figure

    catena-Poly[[(2,2′-bipyridine-κ2 N,N′)cadmium]-μ3-4-nitro­phthalato-κ4 O:O′,O′′:O′′′]

    Get PDF
    In the title polymeric compound, [Cd(C8H3NO6)(C10H8N2)]n, two O atoms from both carboxyl­ate groups of a nitro­phthalate anion coordinate to the CdII cation, forming a seven-membered chelate ring and two carboxyl­ate O atoms from another two nitro­phthalate anions and a 2,2′-bipyridine ligand coordinate to the Cd cation to complete the distorted octa­hedral coordination geometry. The carboxyl­ate groups of the nitro­phthalate anion adopt a syn–anti bridging mode, linking adjacent CdII cations and forming a polymeric chain running along the a axis. Weak intra- and inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure

    Tetra­aqua­bis­[3-(pyridin-4-yl)benzoato-κN]cobalt(II)

    Get PDF
    In the title compound, [Co(C12H8NO2)2(H2O)4], the Co atom lies on a twofold rotation axis and has an N2O4 octa­hedral coordination environment formed by four O atoms of water mol­ecules in the equatorial plane and two apical N atoms of pyridine groups. An intricate three-dimensional supra­molecular network is formed by multiple O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate groups

    Criticality-Based Quantum Metrology in the Presence of Decoherence

    Full text link
    Quantum metrology aims to use quantum resources to improve the precision of measurement. Quantum criticality has been presented as a novel and efficient resource. Generally, protocols of criticality-based quantum metrology often work without decoherence. In this paper, we address the issue whether the divergent feature of the inverted variance is indeed realizable in the presence of noise when approaching the QPT. Taking the quantum Rabi model (QRM) as an example, we obtain the analytical result for the inverted variance. We show that the inverted variance may be convergent in time due to the noise. When approaching the critical point, the maximum inverted variance demonstrates a power-law increase with the exponent -1.2, of which the absolute value is smaller than that for the noise-free case, i.e., 2. We also observe a power-law dependence of the maximum inverted variance on the relaxation rate and the temperature. Since the precision of the metrology is very sensitive to the noise, as a remedy, we propose performing the squeezing operation on the initial state to improve the precision under decoherence. In addition, we also investigate the criticality-based metrology under the influence of the two-photon relaxation. Contrary to the single-photon relaxation, the quantum dynamics of the inverted variance shows a completely-different behavior. It does not oscillate with the same frequency with respect to the re-scaled time for different dimensionless coupling strengths. Strikingly, although the maximum inverted variance still manifests a power-law dependence on the energy gap, the exponent is positive and depends on the dimensionless coupling strength. This observation implies that the criticality may not enhance but weaken the precision in the presence of two-photon relaxation. It can be well described by the non-linearity introduced by the two-photon relaxation.Comment: 6 pages, 5 figure

    Controlled-NOT gate based on the Rydberg states of surface electrons

    Full text link
    Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect two-dimensional platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT (CNOT) gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency (EIT) effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters

    (Methanol-κO)bis­{2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato-κ2 O,O′}tris­(nitrato-κ2 O,O′)lanthanum(III)

    Get PDF
    The asymmetric unit of title compound, [La(NO3)3(C15H15NO2)2(CH3OH)], consists of two Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolato (HL) ligands, three independent nitrate anions and one methanol mol­ecule coordinated to LaIII. The coordination environment of the LaIII ion is formed by eleven O atoms. Three bidentate nitrate anions coordinate to the LaIII ion, while two HL ligands chelate the metal center with O atoms from the phenolate and meth­oxy groups. The HL ligands are zwitterionic, with protonated imine N atoms. The coordination sphere is completed by one methanol mol­ecule. The protonated imine N atoms are involved in intra­molecular N—H⋯O hydrogen bonds with the phen­oxy groups and nitrate ligands. One O atom of one nitrate group is disordered over two sites of equal occupancy

    Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping

    Full text link
    The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.Comment: 6 pages, 3 figure

    In situ epicatechin-loaded hydrogel implants for local drug delivery to spinal column for effective management of post-traumatic spinal injuries

    Get PDF
    Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant,  anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury.Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard.Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity  (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed  significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injuryrat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard.Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.Keywords: Epicatechin, In situ gel, Chitosan, Spinal injury, Post-traumatic, Motor activity, Antiinflammator
    • …
    corecore