6 research outputs found

    Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics

    No full text

    Performance of the CMS Level-1 trigger in proton-proton collisions at root s=13 TeV

    No full text
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-ofmass energy of 13 TeV. During Run 2 (years 2015-2018) the LHC eventually reached a luminosity of 2.1 x 10(34) cm(-2) s(-1), almost three times that reached during Run 1 (2009-2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016-2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Correlations of azimuthal anisotropy Fourier harmonics with subevent cumulants in pPb collisions at root s(NN)=8.16 TeV

    No full text
    Event-by-event long-range correlations of azimuthal anisotropy Fourier coefficients (v(n)) in 8.16 TeV pPb data, collected by the CMS experiment at the CERN Large Hadron Collider, are extracted using a subevent four-particle cumulant technique applied to very low multiplicity events. Each combination of four charged particles is selected from either two, three, or four distinct subevent regions of a pseudorapidity range from -2.4 to 2.4 of the CMS tracker, and with transverse momentum between 0.3 and 3.0 GeV. Using the subevent cumulant technique, correlations between v(n) of different orders are measured as functions of particle multiplicity and compared to the standard cumulant method without subevents over a wide event multiplicity range. At high multiplicities, the v(2) and v(3) coefficients exhibit an anticorrelation; this behavior is observed consistently using various methods. The v(2) and v(4) correlation strength is found to depend on the number of subevents used in the calculation. As the event multiplicity decreases, the results from different subevent methods diverge because of different contributions of noncollective or few-particle correlations. Correlations extracted with the four-subevent method exhibit a tendency to diminish monotonically toward the lowest multiplicity region (about 20 charged tracks) investigated. These findings extend previous studies to a significantly lower event multiplicity range and establish the evidence for the onset of long-range collective multiparticle correlations in small system collisions

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    No full text
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V
    corecore