101,505 research outputs found

    Alternative approach to all-angle negative refraction in two-dimensional photonic crystals

    Full text link
    We show that with an appropriate surface modification, a slab of photonic crystal can be made to allow wave transmission within the band gap. Furthermore, negative refraction and all-angle-negative-refraction (AANR) can be achieved by this surface modification in frequency windows that were not realized before in two-dimensional photonic crystals [C. Luo et al, Phys. Rev. B 65, 201104 (2002)]. This approach to AANR leads to new applications in flat lens imaging. Previous flat lens using photonic crystals requires object-image distance u+v less than or equal to the lens thickness d, u+v d. Our approach can be used to design flat lens with u+v=sd with s>>1, thus being able to image large and/or far away objects. Our results are confirmed by FDTD simulations.Comment: 5 pages, 9 eps figs in RevTex forma

    A probabilistic model checking approach to analysing reliability, availability, and maintainability of a single satellite system

    Get PDF
    Satellites now form a core component for space based systems such as GPS and GLONAS which provide location and timing information for a variety of uses. Such satellites are designed to operate in-orbit and have lifetimes of 10 years or more. Reliability, availability and maintainability (RAM) analysis of these systems has been indispensable in the design phase of satellites in order to achieve minimum failures or to increase mean time between failures (MTBF) and thus to plan maintainability strategies, optimise reliability and maximise availability. In this paper, we present formal modelling of a single satellite and logical specification of its reliability, availability and maintainability properties. The probabilistic model checker PRISM has been used to perform automated quantitative analyses of these properties

    Closed-form Absorption Probability of Certain D=5 and D=4 Black Holes and Leading-Order Cross-Section of Generic Extremal p-branes

    Get PDF
    We obtain the closed-form absorption probabilities for minimally-coupled massless scalars propagating in the background of D=5 single-charge and D=4 two-charge black holes. These are the only two examples of extremal black holes with non-vanishing absorption probabilities that can be solved in closed form for arbitrary incident frequencies. In both cases, the absorption probability vanishes when the frequency is below a certain threshold, and we discuss the connection between this phenomenon and the behaviour of geodesics in these black hole backgrounds. We also obtain leading-order absorption cross-sections for generic extremal p-branes, and show that the expression for the cross-section as a function of frequency coincides with the leading-order dependence of the entropy on the temperature in the corresponding near-extremal p-branes.Comment: Latex (3 times), 20 page

    The Cosmic Evolution of Faint Satellite Galaxies as a Test of Galaxy Formation and the Nature of Dark Matter

    Full text link
    The standard cosmological model based on cold dark matter (CDM) predicts a large number of subhalos for each galaxy-size halo. It is well known that matching the subhalos to the observed properties of luminous satellites of galaxies in the local universe poses a significant challenge to our understanding of the astrophysics of galaxy formation. We show that the cosmic evolution and host mass dependence of the luminosity function of satellites provides a powerful new diagnostic to disentangle astrophysical effects from variations in the underlying dark matter mass function. We illustrate this by comparing the results of recent observations of satellites out to z=0.8z=0.8 based on Hubble Space Telescope images with the predictions of three different sets of state-of-the art semi-analytic models with underlying CDM power spectra and one semi-analytic model with an underlying Warm Dark Matter (WDM) power spectrum. We find that even though CDM models provide a reasonable fit to the local luminosity function of satellites around galaxies comparable or slightly larger than the Milky Way, they do not reproduce the data as well for different redshift and host galaxy stellar mass. This tension indicates that further improvements are likely to be needed in the description of star formation if the models are to be reconciled with the data. The WDM model matches the observed mass dependence and redshift evolution of satellite galaxies more closely than any of the CDM models, indicating that a modification of the underlying power spectrum may offer an alternative solution to this tension. We conclude by presenting predictions for the color magnitude relation of satellite galaxies to demonstrate how future observations will be able to further distinguish between these models and help constrain baryonic and non-baryonic physics.Comment: Accepted for publication in ApJ, revised to incorporate referee comment

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    The Generalized Crewther Relation in QCD and its Experimental Consequences

    Full text link
    We use the BLM scale-fixing prescription to derive a renormalization-scheme invariant relation between the coefficient function for the Bjorken sum rule for polarized deep inelastic scattering and the RR-ratio for the e+ee^+e^- annihilation cross section. This relation provides a generalization of the Crewther relation to non-conformally invariant gauge theories. The derived relations allow one to calculate unambiguously without renormalization scale or scheme ambiguity the effective charges of the polarized Bjorken and the Gross-Llewellen Smith sum rules from the experimental value for the effective charge associated with RR-ratio. Present data are consistent with the generalized Crewther relations, but measurements at higher precision and energies will be needed to decisively test these fundamental relations in QCD.Comment: 16 pages, LATEX fil

    A Black Hole in the Galactic Center Complex IRS 13E?

    Full text link
    The IRS 13E complex is an unusual concentration of massive, early-type stars at a projected distance of ~0.13 pc from the Milky Way's central supermassive black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and their common nature as massive, young stars it has recently been suggested that IRS 13E may be the remnant of a massive stellar cluster containing an intermediate-mass black hole (IMBH) that binds its members gravitationally in the tidal field of Sgr A*. Here, we present an analysis of the proper motions in the IRS~13E environment that combines the currently best available data with a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum mass of ~10^4 solar masses in order to bind the source complex gravitationally. This high mass limit in combination with the absence so far of compelling evidence for a non-thermal radio and X-ray source in IRS 13E make it appear unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind the system gravitationally.Comment: accepted by AP

    DNA-decorated graphene chemical sensors

    Full text link
    Graphene is a true two dimensional material with exceptional electronic properties and enormous potential for practical applications. Graphene's promise as a chemical sensor material has been noted but there has been relatively little work on practical chemical sensing using graphene, and in particular how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards improving the ability of graphene to work as a chemical sensor by using single stranded DNA as a sensitizing agent. The resulting broad response devices show fast response times, complete and rapid recovery to baseline at room temperature, and discrimination between several similar vapor analytes.Comment: 7 pages, To appear in Applied Physics Letter

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio
    corecore