9,899 research outputs found

    ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

    Get PDF
    ROSAT HRI observations have been used to determine an upper limit of the Crab pulsar surface temperature from the off-pulse count rate. For a neutron star mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and interstellar column density, the redshifted temperature upper limit is\/ Ts∞≀1.55×106T_s^\infty \le 1.55\times 10^6 K (3σ)(3\sigma). This is the lowest temperature upper limit obtained for the Crab pulsar so far. Slightly different values for Ts∞T_s^\infty are computed for the various neutron star models available in the literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A. Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )

    Correlations and Equilibration in Relativistic Quantum Systems

    Full text link
    In this article we study the time evolution of an interacting field theoretical system, i.e. \phi^4-field theory in 2+1 space-time dimensions, on the basis of the Kadanoff-Baym equations for a spatially homogeneous system including the self-consistent tadpole and sunset self-energies. We find that equilibration is achieved only by inclusion of the sunset self-energy. Simultaneously, the time evolution of the scalar particle spectral function is studied for various initial states. We also compare associated solutions of the corresponding Boltzmann equation to the full Kadanoff-Baym theory. This comparison shows that a consistent inclusion of the spectral function has a significant impact on the equilibration rates only if the width of the spectral function becomes larger than 1/3 of the particle mass. Furthermore, based on these findings, the conventional transport of particles in the on-shell quasiparticle limit is extended to particles of finite life time by means of a dynamical spectral function A(X,\vec{p},M^2). The off-shell propagation is implemented in the Hadron-String-Dynamics (HSD) transport code and applied to the dynamics of nucleus-nucleus collisions.Comment: 20 pages, 7 figures to appear in "Nonequilibrium at short time scales - Formation of correlations", edited by K. Morawetz, Springer, Berlin (2003), p16

    Gauge links for transverse momentum dependent correlators at tree-level

    Get PDF
    In this paper we discuss the incorporation of gauge links in hadronic matrix elements that describe the soft hadronic physics in high energy scattering processes. In this description the matrix elements appear in soft correlators and they contain non-local combinations of quark and gluon fields. In our description we go beyond the collinear approach in which case also the dependence on transverse momenta of partons is taken into consideration. The non-locality in the transverse direction leads to a complex gauge link structure for the full process, in which color is entangled, even at tree-level. We show that at tree-level in a 1-parton unintegrated (1PU) situation, in which only the transverse momentum of one of the initial state hadrons is relevant, one can get a factorized expression involving transverse momentum dependent (TMD) distribution functions. We point out problems at the level of two initial state hadrons, even for relatively simple processes such as Drell-Yan scattering.Comment: 25 pages, corrected typos and updated reference

    Superconducting properties of the attractive Hubbard model

    Full text link
    A self-consistent set of equations for the one-electron self-energy in the ladder approximation is derived for the attractive Hubbard model in the superconducting state. The equations provide an extension of a T-matrix formalism recently used to study the effect of electron correlations on normal-state properties. An approximation to the set of equations is solved numerically in the intermediate coupling regime, and the one-particle spectral functions are found to have four peaks. This feature is traced back to a peak in the self-energy, which is related to the formation of real-space bound states. For comparison we extend the moment approach to the superconducting state and discuss the crossover from the weak (BCS) to the intermediate coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.

    A One-Health environmental risk assessment of contaminants of emerging concern in London’s waterways throughout the SARS-CoV-2 pandemic

    Get PDF
    The SARS-CoV-2 pandemic had huge impacts on global urban populations, activity and health, yet little is known about attendant consequences for urban river ecosystems. We detected significant changes in occurrence and risks from contaminants of emerging concern (CECs) in waterways across Greater London (UK) during the pandemic. We were able to rapidly identify and monitor large numbers of CECs in n=390 samples across 2019–2021 using novel direct-injection liquid chromatography-mass spectrometry methods for scalable targeted analysis, suspect screening and prioritisation of CEC risks. At total of 10,029 measured environmental concentrations (MECs) were obtained for 66 unique CECs. Pharmaceutical MECs decreased during lockdown in 2020 in the R. Thames (p≀0.001), but then increased significantly in 2021 (p ≀0.01). For the tributary rivers, the R. Lee, Beverley Brook, R. Wandle and R. Hogsmill were the most impacted primarily via wastewater treatment plant effluent and combined sewer overflows. For the R. Hosgmill in particular, pharmaceutical MEC trends were generally correlated with NHS prescription statistics, likely reflecting limited wastewater dilution. Suspect screening of ∌1,200 compounds tentatively identified 25 additional CECs at the five impacted sites, including metabolites such as O-desmethylvenlafaxine, an EU Watch List compound. Lastly, risk quotients (RQs) ≄0.1 were calculated for 21 compounds across the whole Greater London freshwater catchment, of which 7 were of medium risk (RQ ≄1.0) and three were in the high-risk category (RQ ≄10), including imidacloprid (RQ=19.6), azithromycin (15.7) and diclofenac (10.5). This is the largest spatiotemporal dataset of its kind for any major capital city globally and the first for Greater London, representing ∌16 % of the population of England, and delivering a foundational One Health case study in the third largest city in Europe across a global pandemic

    Electron-hole symmetry in a semiconducting carbon nanotube quantum dot

    Full text link
    Optical and electronic phenomena in solids arise from the behaviour of electrons and holes (unoccupied states in a filled electron sea). Electron-hole symmetry can often be invoked as a simplifying description, which states that electrons with energy above the Fermi sea behave the same as holes below the Fermi energy. In semiconductors, however, electron-hole symmetry is generally absent since the energy band structure of the conduction band differs from the valence band. Here we report on measurements of the discrete, quantized-energy spectrum of electrons and holes in a semiconducting carbon nanotube. Through a gate, an individual nanotube is filled controllably with a precise number of either electrons or holes, starting from one. The discrete excitation spectrum for a nanotube with N holes is strikingly similar to the corresponding spectrum for N electrons. This observation of near perfect electron-hole symmetry demonstrates for the first time that a semiconducting nanotube can be free of charged impurities, even in the limit of few-electrons or holes. We furthermore find an anomalously small Zeeman spin splitting and an excitation spectrum indicating strong electron-electron interactions.Comment: 12 pages, 4 figure

    Magnetic resonance peak and nonmagnetic impurities

    Full text link
    Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in YBa2Cu3O7\rm YBa_2Cu_3O_{7}, as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear in Nato Science Series: B Physic

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page

    Experiences, Opportunities and Challenges of Implementing Task Shifting in Underserved Remote Settings: The Case of Kongwa District, Central Tanzania.

    Get PDF
    Tanzania is experiencing acute shortages of Health Workers (HWs), a situation which has forced health managers, especially in the underserved districts, to hastily cope with health workers' shortages by adopting task shifting. This has however been due to limited options for dealing with the crisis of health personnel. There are on-going discussions in the country on whether to scale up task shifting as one of the strategies for addressing health personnel crisis. However, these discussions are not backed up by rigorous scientific evidence. The aim of this paper is two-fold. Firstly, to describe the current situation of implementing task shifting in the context of acute shortages of health workers and, secondly, to provide a descriptive account of the potential opportunities or benefits and the likely challenges which might ensue as a result of implementing task shifting. We employed in-depth interviews with informants at the district level and supplemented the information with additional interviews with informants at the national level. Interviews focussed on the informants' practical experiences of implementing task shifting in their respective health facilities (district level) and their opinions regarding opportunities and challenges which might be associated with implementation of task shifting practices. At the national level, the main focus was on policy issues related to management of health personnel in the context of implementation of task shifting, in addition to seeking their opinions and perceptions regarding opportunities and challenges of implementing task shifting if formally adopted. Task shifting has been in practice for many years in Tanzania and has been perceived as an inevitable coping mechanism due to limited options for addressing health personnel shortages in the country. Majority of informants had the concern that quality of services is likely to be affected if appropriate policy infrastructures are not in place before formalising tasks shifting. There was also a perception that implementation of task shifting has ensured access to services especially in underserved remote areas. Professional discontent and challenges related to the management of health personnel policies were also perceived as important issues to consider when implementing task shifting practices. Additional resources for additional training and supervisory tasks were also considered important in the implementation of task shifting in order to make it deliver much the same way as it is for conventional modalities of delivering care. Task shifting implementation occurs as an ad hoc coping mechanism to the existing shortages of health workers in many undeserved areas of the country, not just in the study site whose findings are reported in this paper. It is recommended that the most important thing to do now is not to determine whether task shifting is possible or effective but to define the limits of task shifting so as to reach a consensus on where it can have the strongest and most sustainable impact in the delivery of quality health services. Any action towards this end needs to be evidence-based

    Kondo Conductance in an Atomic Nanocontact from First Principles

    Full text link
    The electrical conductance of atomic metal contacts represents a powerful tool to detect nanomagnetism. Conductance reflects magnetism through anomalies at zero bias -- generally with Fano lineshapes -- due to the Kondo screening of the magnetic impurity bridging the contact. A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, zero bias conductance anomalies are not presently calculable from atomistic scratch. In this Letter we demonstrate a working route connecting approximately but quantitatively density functional theory (DFT) and numerical renormalization group (NRG) approaches and leading to a first-principles conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanowire. A Fano-like conductance lineshape is obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, and uncover the possibility of opposite antiferromagnetic and ferromagnetic Kondo screening -- the latter exhibiting a totally different and unexplored zero bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding and exploration of this larger variety of Kondo phenomena at more general magnetic nanocontacts.Comment: 11 pages, 3 figures. Supplementary materials under request at [email protected]
    • 

    corecore