43,679 research outputs found

    Universal quantum measurements

    Get PDF
    We introduce a family of operations in quantum mechanics that one can regard as "universal quantum measurements" (UQMs). These measurements are applicable to all finite dimensional quantum systems and entail the specification of only a minimal amount of structure. The first class of UQM that we consider involves the specification of the initial state of the system—no further structure is brought into play. We call operations of this type "tomographic measurements", since given the statistics of the outcomes one can deduce the original state of the system. Next, we construct a disentangling operation, the outcome of which, when the procedure is applied to a general mixed state of an entangled composite system, is a disentangled product of pure constituent states. This operation exists whenever the dimension of the Hilbert space is not a prime, and can be used to model the decay of a composite system. As another example, we show how one can make a measurement of the direction along which the spin of a particle of spin s is oriented (s = 1/2, 1,...). The required additional structure in this case involves the embedding of CP^1 as a rational curve of degree 2s in CP^2s

    Is the Riemann zeta function in a short interval a 1-RSB spin glass ?

    Full text link
    Fyodorov, Hiary & Keating established an intriguing connection between the maxima of log-correlated processes and the ones of the Riemann zeta function on a short interval of the critical line. In particular, they suggest that the analogue of the free energy of the Riemann zeta function is identical to the one of the Random Energy Model in spin glasses. In this paper, the connection between spin glasses and the Riemann zeta function is explored further. We study a random model of the Riemann zeta function and show that its two-overlap distribution corresponds to the one of a one-step replica symmetry breaking (1-RSB) spin glass. This provides evidence that the local maxima of the zeta function are strongly clustered.Comment: 20 pages, 1 figure, Minor corrections, References update

    De Facto Judicial Independence and Physical Integrity Rights

    Get PDF
    Economists, political scientists, and legal scholars have argued that independent judiciaries have an important role to play in promoting economic development and protecting property rights. We argue that judicial independence can also have a positive impact on the protection of human rights. To assess the human rights impact of a de facto independent judiciary, we also argue that scholars must account for the potential of endogeneity between judicial independence and protection of human rights. We examine whether greater de facto independence improves government respect for citizens’ physical integrity rights, using a comprehensive dataset of 193 countries from 1981 to 2010. Employing an instrumental variables approach to control for endogeneity, we find strong support for the argument that greater levels of de facto judicial independence improve government respect for physical integrity rights. These findings are robust to changes in measurement, estimation techniques, and model specification. Failing to account for endogeneity will tend to overemphasize the ability of completely independent courts to improve government respect for physical integrity rights

    Microcanonical distributions for quantum systems

    Get PDF
    The standard assumption for the equilibrium microcanonical state in quantum mechanics, that the system must be in one of the energy eigenstates, is weakened so as to allow superpositions of states. The weakened form of the microcanonical postulate thus asserts that all quantum states giving rise to the same energy expectation value must be realised with equal probability. The consequences that follow from this assertion are investigated. In particular, a closed-form expression for the density of states associated with any system having a nondegenerate energy spectrum is obtained. The result is applied to a variety of examples, for which the behaviour of the state density, as well as the relation between energy and temperature, are determined. Numerical studies indicate that the density of states converges to a distribution when the number of energy levels approaches infinity

    Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness

    Get PDF
    Hedonic pricing with quasi-linear preferences is shown to be equivalent to stable matching with transferable utilities and a participation constraint, and to an optimal transportation (Monge-Kantorovich) linear programming problem. Optimal assignments in the latter correspond to stable matchings, and to hedonic equilibria. These assignments are shown to exist in great generality; their marginal indirect payoffs with respect to agent type are shown to be unique whenever direct payoffs vary smoothly with type. Under a generalized Spence-Mirrlees condition (also known as a twist condition) the assignments are shown to be unique and to be pure, meaning the matching is one-to-one outside a negligible set. For smooth problems set on compact, connected type spaces such as the circle, there is a topological obstruction to purity, but we give a weaker condition still guaranteeing uniqueness of the stable match

    On the variable capacity property of CC/DS-CDMA systems

    Get PDF
    A complete complementary code based direct sequence code division multiple access (CC/DS-CDMA) system has been proposed recently as a potential candidate for beyond third generation (B3G) wireless communications. This paper addresses the issues that design of efficient code assignment schemes should be based on a flexible physical layer support, which is extremely important for emerging cross-layer designs in future wireless applications. The study in this paper considers a CC/DS-CDMA system with multiple time slots, three traffic classes and two dynamic code-flock assignment schemes, namely random assignment (RA) and compact assignment (CA). Simulation results show that the CC/DS-CDMA system has variable capacity property (VCP), which is sensitively affected by different code-flock assignment schemes. In general, CA can offer lower blocking probability, whereas RA can offer a larger mean system capacity and higher throughput when offered traffic is heavy

    The VgrG Proteins Are "à la Carte" Delivery Systems for Bacterial Type VI Effectors

    Get PDF
    The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1–3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier
    corecore