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Abstract. We introduce a family of operations in quantum mechanics that one can regard as
“universal quantum measurements” (UQMs). These measurements are applicable to all finite-
dimensional quantum systems and entail the specification of only a minimal amount of structure.
The first class of UQM that we consider involves the specification of the initial state of the
system—no further structure is brought into play. We call operations of this type “tomographic
measurements”, since given the statistics of the outcomes one can deduce the original state
of the system. Next, we construct a disentangling operation, the outcome of which, when the
procedure is applied to a general mixed state of an entangled composite system, is a disentangled
product of pure constituent states. This operation exists whenever the dimension of the Hilbert
space is not a prime, and can be used to model the decay of a composite system. As another
example, we show how one can make a measurement of the direction along which the spin of
a particle of spin s is oriented (s = 1

2
, 1, . . . ). The required additional structure in this case

involves the embedding of CP1 as a rational curve of degree 2s in CP2s.

1. Introduction
As we enter into what may be the dawning of an age of quantum engineering, the
widespread interest in quantum information, quantum communication, quantum cryptography,
and quantum computation thus entailed has had the effect of reawakening research in finite
dimensional quantum systems. Indeed, from a mathematical point of view an n-dimensional
quantum system can be given a very satisfactory treatment, bringing elements of algebraic
geometry, symplectic geometry, Riemannian geometry, and convex analysis into play that are
perhaps less obviously central in the infinite-dimensional situation. Foundational issues are being
revisited as well, in part with a view to underpinning applications, but also on account of the
fact that when the fog of technical issues associated with the infinite dimensional case clears one
can in the finite-dimensional case—in its own way no less rich—identify more distinctly some of
the problematic aspects of the general theory.

As a way of honouring the scientific career of Professor Bogdan Mielnik we propose in the
present paper to construct a variety of generalized measurement operations arising in the finite-
dimensional case that only involve a minimal amount of structure on the Hilbert space. To
the extent that the structure involved is indeed minimal, the class of measurement operations
associated with it is maximal—or “universal”—that is to say, applicable to any quantum system.
We shall look at a number of explicit examples of such universal quantum measurements (UQMs)
and comment on their possible applications.
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We begin in Section 2 with a brief résumé of quantum mechanics from a modern perspective,
emphasizing geometrical and probabilistic aspects of the theory. The idea is to model simple
quantum systems in such a way that they can be regarded as elements of more complicated
systems. To model a quantum system we need to specify a collection of suitably inter-related
mathematical objects representing different aspects of the system. In the spirit of von Neumann
(1955, IV.1) we can thus say that when a quantum system is given it is “characterized for
the experimenter by the enumeration of all the effectively measurable quantities in it and their
functional relations with one another.” We keep the point of view pragmatic, with a view to
modelling various systems of the type that might be involved in applications to information
technology. No attempt will be made to model the universe as a whole, or to address the
“measurement problem”, and the models we look at will be mainly nonrelativistic—or, more
precisely, pre-relativistic, since we do not bring the geometry of space and time into play.

We find it convenient to use an index notation for Hilbert space operations in our development
of the theory of quantum state transformations. In Proposition 1 we present a useful
characterization of positive maps, and in Proposition 2 we present a simplified proof of Choi’s
theorem on completely positive maps. In Section 3 we use the language of σ-algebras to
present a rather general approach to modelling experiments on quantum systems and the state
transformations that occur when an experiment is performed. Then in Section 4 we turn to
the construction of universal quantum measurements that do not involve any structure other
than that which is implicit in the geometry of the Hilbert space of the system. In particular, no
preferred “observables” are selected. Such a measurement can be regarded as a determination of
the state of the system. The input state can be any mixed state, and the output is a pure state.
If measurements are performed on a large number of independent identical copies of a quantum
system, then by gathering the data of the resulting pure output states one can determine the
input state. Thus, such measurements are “tomographic” or “informationally complete” .

Then we consider examples involving some symmetry breaking, but again without the
specification of any observables. The first of these is a “disentangling” operation, introduced in
Section 5. These operations exist whenever the dimension of the Hilbert space is not a prime,
and rely on the fact that if the dimension of the Hilbert space is a composite then the Hilbert
space can be regarded as the tensor product of two or more Hilbert spaces of lower dimension,
which we regard as “constituent” spaces. Disentangling measurements take the form of basic
UQMs (of the type described above) but operating at the level of the constituents. The input
state is a general mixed state, and the output state takes the form of a disentangled composite
of pure states. The required additional structure involves a canonical Segre embedding of form

CPp1−1 × CPp2−1 × CPp3−1 · · · → CPn−1, (1)

where the prime factorization of n is given by

n =
∏
i

pi . (2)

Finally, in Section 6 we consider a class of “coherent” measurements that generalize the idea
of determining the axis of spin in the case of a particle with spin. The additional structure
involved in this class of generalized measurements takes the form of an embedding of CPn−1 as
a rational variety of degree d in CPN−1, where

N =
(n+ d− 1)!

(n− 1)! (d)!
. (3)

For example, if n = 3, the additional structure is given by the embedding of CP2 as a rational
surface of degree d in CPN−1 for N = 1

2(d+ 1)(d+ 2). In the case of degree two we obtain the
classical Veronese embedding of CP2 as a rational surface in CP5.
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2. States and operations
In the standard approach to quantum theory taught to undergraduate physicists, the usual line
of attack is to introduce states as elements of a Hilbert space, then observables as Hermitian
operators; a Hamiltonian is introduced as a special observable, and the evolution of the state
vector, in the absence of external interventions, is given by the Schrödinger equation. When a
measurement of an observable is made, the outcome is one of the eigenvalues of the associated
Hermitian operator, and the probability of any particular outcome can be worked out using the
Born rule; the associated change in the state of the system is then determined by the so-called
projection postulate of von Neumann in the more general form introduced by Lüders (1951)
to take into account degeneracies (see Adler et al. 2001, sections 2-3, for a discussion of the
status of the Lüders postulate). We shall assume that the reader is familiar with the standard
approach, and how it is conventionally applied, and we take for granted its many strengths.

Nevertheless, from a modern perspective we can to some extent dispense with the foundational
notions of observables as Hermitian operators and states as state vectors. Even if for convenience,
or out of habit, we still use the associated “old-fashioned” language from time to time, these
traditional notions are strictly speaking no longer required.

As mentioned, in what follows we use an index notation in Hilbert space calculations. We
model a typical quantum system with the introduction of a finite dimensional complex vector
space Hα (α = 1, 2, . . . , n) of some specified dimension n ≥ 2, equipped with a complex
conjugation operation C, which maps elements of Hα to the associated dual space Hα. Thus
if Xα is a typical element of Hα, then under the complex conjugation map Xα gets mapped
by C to the dual vector X̄α in Hα. For any two elements Xα and Y α in Hα, if we form the
sum aXα + bY α, where a and b are complex numbers, then under complex conjugation this gets
mapped in an antilinear way to āX̄α + b̄Ȳα. The complex conjugation map acts in such a way
that it likewise sends elements of Hα to Hα, with C2 = 1. This structure is to be regarded as
in place when we state that Hα is a finite-dimensional complex Hilbert space.

A compelling case for use of the index notation is made in Geroch (1974). One could in
principle use the notation of bras and kets, or an abstract notation; but for our purpose the
index notation is more effective, since tensorial objects arise frequently in the discussion of
quantum systems. The use of an index label on the Hilbert space itself acts as a reminder of
the structure of the space, a convention that is handy when complicated tensor products of such
spaces are brought into play. Thus we write Hα for the Hilbert space, Hα for its dual, and

Hαβ = Hα ⊗Hβ (4)

for the tensor product of Hα and Hβ. Similarly we write

Hαβ = Hα ⊗Hβ, Hαβ = Hα ⊗Hβ, Hαγβδ = Hα ⊗Hβ ⊗Hγ ⊗Hδ, (5)

and so on. We use the summation convention to write XαX̄α for the inner product between the
ket Xα and the bra X̄α, and we say that the vector Xα is normalized if XαX̄α = 1. The scheme
that we have in mind for the manipulation of multi-index tensorial objects in the present setting
is essentially the same as the general “abstract index” setup outlined, for example, in section 3
of Penrose (1968), and sections 2.1-2.2 of Penrose & Rindler (1984). Following the conventional
terminology we often refer to the elements of Hα as “state vectors”, and the associated rays as
“states”. This way of speaking is a convenient relic of the old-fashioned approach.

Now we are in a position to introduce the ideas of states as positive operators and operations
as maps from states to states. There is a substantial body of literature concerned with
operational approaches to quantum mechanics, much of which is relevant to the “modern”
approach to the subject. See, for example, Davies (1976), Davies & Lewis (1970), Haag &
Kastler (1964), Holevo (1982), Krauss (1971, 1983), Mielnik (1968, 1969, 1974), Segal (1947),
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and references cited therein. We begin with the notion of a state. The elements of Hαβ act as
linear operators on the Hilbert space and its dual. Under complex conjugation, any element

Fαβ ∈ Hαβ is mapped to an element F̄ βα ∈ Hβα. Since the vector spaces Hαβ and Hβα are naturally
isomorphic, we can say that Fαβ ∈ Hαβ is mapped under complex conjugation to another element

F̄αβ ∈ Hαβ . Then we say that Fαβ is Hermitian if Fαβ = F̄αβ . We shall write Oαβ for the space of

Hermitian operators. An element Fαβ ∈ Oαβ is said to be positive (nonnegative) if Fαβ ξ
β ξ̄α ≥ 0

for all ξα ∈ Hα, and strictly positive if Fαβ ξ
β ξ̄α > 0 for all ξα ∈ Hα. A Hermitian operator is

positive if and only if there exists a collection of one or more linearly independent vectors Zαi ,
with complex conjugates Z̄iα, each normalised to unity, such that Fαβ is of the form

Fαβ =
∑
i

fiZ
α
i Z̄iβ (6)

where the fi are positive constants. If a Hermitian operator is strictly positive, then one can find
a set of n mutually orthogonal vectors, each normalised to unity, such that Fαβ can be written

in the form (1) and where the fi are strictly positive.
We shall write +Oαβ for the cone of positive Hermitian operators. By a “state” we mean

any nontrivial element of +Oαβ . If Aαβ and Bα
β are elements of +Oαβ , and if a and b are positive

constants, not both zero, then aAαβ +bBα
β is also an element of +Oαβ . By a “pure” state, we mean

a state of the form ZαZ̄β for some (nontrivial) vector Zα. A state Fαβ is said to be normalized
if Fαα = 1. In what follows, we do not require that states are necessarily normalized. The terms
“state” and “density matrix” are used more or less interchangeably in the modern literature; we
shall usually reserve the term “density matrix” for a normalized state. It should be clear that
with each state vector Xα one can associate a corresponding pure state XαX̄β. For this reason, it
is indeed consistent, even if somewhat misleading, to regard state vectors as representing a class
of “states”. In fact, the physics literature seems to be divided on the issue of what constitutes
a state. Some physicists take the view, in effect, that an individual quantum system is always
in a pure state, and that so-called mixed states, represented by density matrices, correspond to
“ensembles” of pure states (see Hughston et al. 1993 on this point). Other physicists seem to
be happy with the idea that an individual quantum system can be in a mixed state, but that
this represents a state of ignorance concerning the “true” state of the system, which is pure.

In our scheme the state of an individual system is represented by a density matrix, which may
or may not be pure, and the question of how we use this density matrix, and what calculations
we perform with it, depends on the particular model we are constructing. In some models, for
example, it can be fruitful to introduce the idea of an ensemble in the form of a probability
measure on the space of pure states, which in turn can be represented by a probability measure
on the complex projective space CPn−1 associated with the given n-dimensional Hilbert space.

By an “operation” on a quantum system we mean a positive linear map from +Oαβ to itself.

Thus we need to consider elements of the space Oαβ
′

α′β and characterize those elements that

constitute positive maps, i.e. maps from states to states. Here we write Oαβ
′

α′β for the space of

Hermitian elements of the tensor product space Hαβ
′

α′β . The primed letters α′, β′, and so on, are

regarded as extra letters of the alphabet. The action of φαβ
′

α′β ∈ O
αβ′

α′β on a state Fαα′ is given by

Fαα′ → φαβ
′

α′β F
β
β′ . (7)

We say that φαβ
′

α′β is a positive map if under the action indicated above it maps any positive
operator to another positive operator.
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Proposition 1. The map φαβ
′

α′β ∈ O
αβ′

α′β is positive if and only if for all Xα, Y α ∈ Hα we have

Xα′
X̄αφ

αβ′

α′β Y
βȲβ′ ≥ 0. (8)

Proof. We require that for any positive operator F ββ′ the transformed operator φαβ
′

α′β F
β
β′ should

be positive. Thus for all Xα we require that

Xα′
X̄αφ

αβ′

α′β F
β
β′ ≥ 0. (9)

In particular, if F ββ′ is a pure state Y βȲβ′ then we obtain (8). Conversely, suppose that (8) holds.
Now, any state can be represented as a positively weighted sum of pure states. If we fix Xα and
consider the inequality (8) for various choices of Y α, we deduce that (9) holds for any positive

F ββ′ . Since this is true for any choice of Xα, we deduce that φαβ
′

α′β is a positive map.

Let us write +Oαβ
′

α′β for the space of such positive maps. For applications we frequently
require a stronger condition that limits the class of admissible maps to a subspace of the space
of positive maps consisting of so-called “completely positive” maps. The condition of complete

positivity ensures that if φαβ
′

α′β acts “locally” on any state of the larger composite system obtained

by forming the tensor product of the Hilbert space Hα and any “ancilla” Hilbert space Hj (not
necessarily of the same dimension), then the result is a positive operator. More precisely, suppose
that a typical Hilbert space vector of such a composite system is given by Xαj ∈ Hαj . One
can think of the index “clump” αj as constituting an index for the Hilbert space vector of the
composite system. A general state of the composite system is given by a positive operator of
the form Fαjβk . By saying that Fαjβk is a positive operator in this situation we mean that for any

composite state vector Xβk we have

XβkX̄αjF
αj
βk ≥ 0. (10)

Now clearly if we let φαβ
′

α′β operate “only on the first element of the composite” through the
transformation

Fα jα′j′ → φαβ
′

α′β F
β j
β′j′ , (11)

then this gives us a linear map from Hermitian operators to Hermitian operators on the composite

system, and we can call φαβ
′

α′β a “local” operation. We say that φαβ
′

α′β is “completely positive” if
for any such composite system the given transformation takes states to states. Note that we do
not require here that such an operation should preserve the normalization of a state.

Proposition 2. The map φαβ
′

α′β is completely positive if and only if for some N ≥ 1 there exists

a family of operators Kα
β (i) for i = 1, . . . , N such that

φαβ
′

α′β =

N∑
i=1

Kα
β (i)K̄β′

α′ (i). (12)

Proof. We require that the transformed state (11) is positive for any initial composite state. This

must be true in particular for a pure state of the form F β jβ′j′ = ξβ j ξ̄β′j′ . The transformed state

in that case is φαβ
′

α′β ξ
β j ξ̄β′j′ , and to ensure that it is positive we require that for any composite

state vector Xαi we have
Xα′j′X̄αj φ

αβ′

α′β ξ
β j ξ̄β′j′ ≥ 0. (13)
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If we set
Zα

′
β′ = Xα′j′ ξ̄β′j′ , Z̄βα = X̄αjξ

βj , (14)

then the inequality (8) takes the simple form

φαβ
′

α′β Z
α′
β′ Z̄βα ≥ 0. (15)

This is the condition that the Hermitian form obtained by clumping the indices on Zα
′

β′ and Z̄βα
should be positive. As a consequence one sees by the theory of positive Hermitian forms that

φαβ
′

α′β admits an expansion of the form (12). Conversely, if φαβ
′

α′β takes the form (12), then it is
straightforward to check that the resulting map is completely positive. One needs to verify that

for any composite state F β jβ′j′ and any composite vector Xα′j′ it holds that

Xα′j′X̄αj

N∑
i=1

Kα
β (i) K̄β′

α′ (i)F
β j
β′j′ ≥ 0. (16)

But this follows at once since

Xα′j′X̄αj

N∑
i=1

Kα
β (i) K̄β′

α′ (i)F
β j
β′j′ =

N∑
i=1

W β′j′(i)W̄βj(i)F
β j
β′j′ , (17)

where for each value of i we define

W β′j′(i) = Xα′j′K̄β′

α′ (i), W̄βj(i) = X̄αjK
α
β (i), (18)

and we thus observe that each term on the right hand side of (12) is positive by virtue of the

assumed positivity of the state F β jβ′j′ .

The result of Proposition 2 is the theorem of Choi (1975), with a proof that is on account of
the use of the index notation perhaps more transparent than the original.

3. Experiments and state transformations
Rather than taking a “one size fits all” approach to quantum theory, the idea is to construct
a number of different models. Each model involves the specification of a quantum system,
the experiments that can be made on it, the possible outcomes, and the resulting state
transformations. The quantum system is represented by a Hilbert space Hα along with a
state wαβ . Each experiment that can be performed is described by a measurable space (Ω,F)
endowed with some structure that relates it to the Hilbert space Hα and the state wαβ . Here
the set Ω represents all of the possible outcomes of chance when the experiment is performed,
and F is a collection of subsets of Ω forming a σ-algebra.

More precisely, we require that Ω itself should belong to F , that the empty set ∅ should
belong to F , and that the union of any countable collection of elements of F should belong
to F . Distinct σ-algebras correspond to distinct experiments. If E and F are σ-algebras on Ω,
and if E is a sub-σ-algebra of F , then we can say that the experiment F is a refinement of the
experiment E . Conversely, we can say that the experiment E is a “course-grained” version of
the experiment F . In this way one obtains hierarchies of experiments.

In a given experiment (Ω,F), if ω ∈ Ω is the outcome of chance, then the result of the
experiment is the smallest element A ∈ F such that ω ∈ A. We say that A is the smallest
element of F containing ω if ω belongs to no proper subset of A which is also an element of F .
In general, distinct outcomes of chance can give rise to the same result for an experiment. It may
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be that for each ω ∈ Ω the subset {ω} ⊂ Ω that only contains ω belongs to F . This happens for
example in “refined” experiments where the result of the experiment is sufficient to determine
the outcome of chance. We distinguish between the outcomes of chance (which are elements of
the set Ω) and the results of experiments (which are minimal elements of F). Each outcome of
chance belongs to a unique minimal element of F . One might ask why we introduce the entire
σ-algebra F if only the “minimal” elements of F count as possible results of the experiment
represented by F . The reason is that when we consider an experiment, we generally like to
consider alongside it the various course-grained versions of the experiment. Thus given F we
wish to consider as well the various σ-subalgebras associated with it, the minimal elements of
which are not necessarily minimal elements of F .

The next ingredient that we require for the specification of an experiment is a system of
state transformations T = {T (A), A ∈ F}. Thus T takes the form of a transformation-valued
measure on (Ω,F), satisfying the following conditions:

(i) For each A ∈ F , the associated state transformation T (A) is given by a completely positive
map of the form

T (A) : wαβ → Tαβ
′

βα′ (A)wα
′

β′ . (19)

(ii) The system T = {T (A), A ∈ F} is countably additive. Thus, Tαβ
′

βα′ (∅) = 0, and if the sets

{An : n ∈ N} are disjoint, and such that A = ∪nAn, then

Tαβ
′

βα′ (A) =
∑
n∈N

Tαβ
′

βα′ (An) . (20)

(iii) For each A ∈ F , T (A) is trace-reducing. Thus, we have

T γβ
′

γα′ (A) wα
′

β′

wγγ
≤ 1 . (21)

(iv) T (Ω) satisfies the law of total probability. Thus, we have

T γβ
′

γα′ (Ω) wα
′

β′

wγγ
= 1 . (22)

Again, the transformations are specified for each element of F , not merely for the minimal
elements. In this way, we also determine the relevant transformations for each course-grained
version of the experiment.

Once we have specified the system of transformations on F , then in the experiment (Ω,F ,T),
or coursed-grained version thereof, the probability that the outcome of chance ω lies in the set
A ∈ F is given by

P(ω ∈ A) =
T γβ

′

γα′ (A) wα
′

β′

wγγ
. (23)

If Aω denotes the smallest element of F containing ω, and if P(ω ∈ Aω) 6= 0, then the normalized
state transformation associated with ω is

wαβ →
Tαβ

′

βα′ (Aω) wα
′

β′

T γβ
′

γα′ (Aω) wα
′

β′

. (24)

The state transformations associated with the usual projective measurements (with or without
selection) in quantum mechanics take this form, and so do the transformations associated
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with more general discrete positive operator-valued measures. For example, in the maximally
course-grained experiment corresponding to a non-selective projective measurement we have
F = {Ω,∅}. In that case, the outcome of the measurement is trivial in the sense that we have
P(ω ∈ Ω) = 1 and P(ω ∈ ∅) = 0. Nevertheless, the state transformation will in general be
nontrivial. For example, in the case of a non-selective projective measurement of the energy
of a finite-dimensional system with a nondegenerate Hamiltonian, no “outcome” is recorded
other than the fact the experiment was done (“the result lies in the admissible set of possible
outcomes”), yet the state transforms from a general state to a state which is diagonal in the
energy basis.

In the continuous case, the probability of any particular outcome of chance is zero. In that
situation we model the state transformations as follows. We suppose that there exists a measure

µ(dω) on Ω and a transformation density tαβ
′

βα′(ω) with the property that for any A ∈ F we have

Tαβ
′

βα′ (A) =

∫
Ω
1{ω ∈ A}tαβ

′

βα′(ω) µ(dω) . (25)

Then the probability distribution for the outcome of chance is

P(ω ∈ dω) = tγβ
′

γα′(ω) wα
′

β′ µ(dω) , (26)

and the normalized state transformation is given by

wαβ →
tαβ

′

βα′(ω) wα
′

β′

tγβ
′

γα′(ω) wα
′

β′

. (27)

In what follows, we shall be concerned mainly with the continuous situation where we have a
finite dimensional Hilbert space and the outcome space Ω has the structure of a manifold on
which a natural candidate for the measure µ(dω) on Ω is available.

4. Tomographic measurements
We consider the case where the measurable space Ω representing the possible outcomes of chance
is the manifold CPn−1, the space of pure states associated with the given Hilbert space Hα.
This is a rather natural choice to look at first since it does not involve the introduction of any
additional structure on the quantum system. Thus all finite dimensional quantum systems admit
a version of the following measurement operation. Write Ω = CPn−1, let x denote a typical point
in Ω, and let Zα(x) denote a representative vector in Hα\{0} lying on the fibre above the point
x ∈ Ω. Then we can construct a system of transformations T by setting

Tαβ
′

βα′ (A) = n

∫
Ω
1{x ∈ A}

Zα(x)Zβ
′
(x)Z̄β(x)Z̄α′(x)

(Zγ(x)Z̄γ(x))2
µ(dx) (28)

for any element A of the Borel σ-algebra on Ω. Here

µ(dx) =
DZ(x)∫
ΩDZ(x)

(29)

defines the uniform probability measure on CPn−1, where

DZ =
εαβ···γZ

αdZβ · · · dZγ εαβ···γZ̄αdZ̄β · · · dZ̄γ
(ZγZ̄γ)n

. (30)
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Clearly, we have µ(Ω) = 1. The associated transformation density is then given by

tαβ
′

βα′(x) = n
Zα(x)Zβ

′
(x)Z̄β(x)Z̄α′(x)

(Zγ(x)Z̄γ(x))2
. (31)

The outcome of chance in such a measurement is a pure state. If the initial state is wαβ and if

the outcome of chance is the point x in CPn−1, the resulting normalized state transformation is

wαβ →
Zα(x)Z̄β(x)

Zγ(x)Z̄γ(x)
. (32)

The probability that the outcome lies in a given Borel set A in the space of pure states is

P(x ∈ A) = Eαβ (A)wβα , (33)

where the “effect” Eαβ (A) associated with the set A is given by

Eαβ (A) = n

∫
Ω
1{x ∈ A}

Zα(x)Z̄β(x)

Zγ(x)Z̄γ(x)
µ(dx) . (34)

Note that Eαβ (Ω) = δαβ . It follows in particular that the function ρ : CPn−1 → R+ defined by

ρ(x) = n
Zα(x)wβα Z̄β(x)

Zc(x)Z̄c(x)
(35)

is the probability density for the outcome x ∈ dx. Thus we have

P(x ∈ dx) = ρ(x) µ(dx). (36)

The significance of the factor of n in the expressions above is that it ensures that if the initial
state is of the “totally unbiased” form

wαβ =
1

n
δαβ , (37)

then the probability density is uniform, and we have ρ(x) = 1.
Now suppose we consider the situation where we have a large number of independent identical

copies of the system, and we make a measurement of this type on each copy. If we analyze the
statistics of the measurements, then we can to a good degree of accuracy determine ρ(x), and
hence determine the original state wαβ . More precisely, the “ensemble” of measurement outcomes

has the density ρ(x), and therefore the state rαβ of the ensemble representing the outcomes of
the measurements is

rαβ =

∫
Ω
ρ(x)

Zα(x)Z̄β(x)

Zγ(x)Z̄γ(x)
µ(dx). (38)

The integral can be worked out explicitly by use of the following identity:∫
Ω

Zα(x)Zβ
′
(x) Z̄β(x) Z̄α′(x)

(Zγ(x) Z̄γ(x))2
µ(dx) =

1

n(n+ 1)

(
δαβ δ

β′

α′ + δαα′ δ
β′

β

)
. (39)

A calculation making use of (35) and (39) then shows that

rαβ =
1

n+ 1

(
δαβ + wαβ

)
. (40)

Mielnik50 IOP Publishing
Journal of Physics: Conference Series 624 (2015) 012002 doi:10.1088/1742-6596/624/1/012002

9



We see that the original state wαβ is in general “diluted” as a consequence of the measurement
operation. But if the initial state is unbiased, then so is the final state. In all cases, nevertheless,
we can recover the original state from the statistics of the measurement observations since

wαβ = (n+ 1)rαβ − δαβ . (41)

We can call such an experiment a “universal quantum measurement” (UQM) since it can be
applied to any finite-dimensional quantum system. No additional structure is required apart
from what is already implicit in the original specification of the system Hα. Evidently, this is
possible. One can envisage the construction of a machine with the property that given a sample
consisting of a large number of identical “molecules” of some type, all in the same state, the
structure of a typical molecule can be determined.

5. Disentangling operations
Universal quantum measurements of the type just discussed can form elements of composite
operations. In that case, we introduce more structure on the Hilbert space, but typically not
involving the choice of specific observables. An example is as follows. Consider the Hilbert
space of a pair of qubits. The Hilbert space has dimension four, and the associated pure state
space is CP3. The space of disentangled pure states is a quadric surface in CP3. The quadric
is a doubly ruled surface, given by the product of two CP1s. Each of the CP1s is endowed
with the Fubini-Study measure, so the quadric also has a natural uniform measure on it, given
by the product measure. This gives rise to a class of UQMs that we can call “disentangling
operations”. Starting with a general (i.e. mixed) state of the two-qubit system, the outcome of
a disentangling operation is a point on the quadric. The transformation density is the product
of the transformation densities associated with the UQMs attached to the individual qubits.

In more detail we have the following. Write HAA′
(A,A′ = 1, 2) for the tensor product of the

two qubit spaces HA and HA′
. A state vector ξAA

′ ∈ HAA′
is disentangled if it is of the form

ξAA
′

= αAβA
′
. The associated quadric Q in CP3 is the locus

εAB εA′B′ ξAA
′
ξBB

′
= 0, (42)

where εAB = −εBA. The resulting uniform measure on the quadric is given for x ∈ Q by

µQ(dx) = µα(dx)µβ(dx), (43)

where

µα(dx) =
εABα

A(x)dαB(x) εCDᾱC(x)dᾱD(x)

(αE(x)ᾱE(x))2
(44)

and

µβ(dx) =
εA′B′βA

′
(x)dβB

′
(x) εC

′D′
β̄C′(x)dβ̄D′(x)

(βE′(x)β̄E′(x))2
. (45)

The relevant transformation density has its mass concentrated entirely on the quadric, and is
given for x ∈ Q by

tAA
′CC′

BB′DD′(x) = 4
αA(x)βA

′
(x)αC(x)βC

′
(x) ᾱB(x)β̄B′(x)ᾱD(x)β̄D′(x)

(αE(x)ᾱE(x))2 (βE′(x)β̄E′(x))2
(46)

If the initial state is a prescribed density matrix of the form wBB
′

AA′ , then the probability that the
outcome lies in a measurable region R ⊂ Q is

P(ω ∈ R) = 4

∫
x∈R

wBB
′

AA′
αA(x)βA

′
(x)ᾱB(x)β̄B′(x)

αE(x)ᾱE(x) βE′(x)β̄E′(x)
µQ(dx). (47)
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One checks that if the initial state takes the unbiased form

wBB
′

AA′ =
1

4
δBAδ

B′
A′ , (48)

then the distribution of the outcome is uniform over the quadric. On the other hand, if the
initial state is a pure singlet state of the form

wBB
′

AA′ =
1

2
εAA′ εBB

′
, (49)

then the outcome probability is highest in regions of the quadric corresponding to EPR-Bohm
pairs, and vanishes when the two particles have the same state. This type of operation may thus
be useful as a model for the decay of a particle composed of spin one-half constituents.

A similar construction applies for entangled states of many-particle systems in higher
dimensions, in which case the relevant outcome space is given by the Segre embedding of the
product space of the pure state spaces associated with the constituent systems. Whether one
views this experiment as a “measurement” or a “procedure” is to some extent a matter of taste.
In any case, the effect of the operation is to disintegrate the system into its constituents.

6. Coherent measurements
Consider a three-dimensional Hilbert space, for which the space of pure states has the structure
of the complex projective space CP2 endowed with the Fubini-Study metric. Let C be a real
conic curve in CP2. By “real” we mean the following: we require that for any point x in C the
associated complex conjugate line (representing pure states orthogonal to x) is tangent to the
conic. Such a setup is equivalent to representing Hα as a space of symmetric spinors HAB, with
a typical element zAB (where A = 1, 2) so zAB = zBA. The conic is given by

εAB εCD z
ACzBD = 0 , (50)

where εAB = −εBA. The solution to this quadratic equation takes the form

zAB = φAφB (51)

for some φA. The associated complex conjugate line consists of all states xAB such that

φ̄Aφ̄Bx
AB = 0. (52)

Thus the pure states orthogonal to the point zAB = φAφB on the conic are of the form

xAB = φ̄(AαB) (53)

for some αA. But any such state lies on a line tangent to C, the tangent point being φ̄Aφ̄B.
We can use C as the outcome space of a special class of measurements. For any initial spin-one
mixed state wABCD the outcome of the measurement is a point of the conic C, that is to say, a
pure spin state with a definite direction for the axis of spin. Thus, the state transformation is

wABCD → φAφBφ̄C φ̄D / (φEφ̄E)2 . (54)

The probability that the outcome lies in a given Borel set A ⊂ C is given by

P(ω ∈ A) = 3

∫
A

wABCD φC(x)φD(x)φ̄A(x)φ̄B(x)

(φE(x)φ̄E(x))2
µ(dx), (55)
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where µ(dx) is the uniform probability measure on C induced by the Veronese embedding of
CP1 in CP2 as a rational curve. Such an experiment on a spin-one system can be interpreted
physically as a “measurement of the direction of the axis of the spin” of the particle. The
result of the experiment is an answer to the question “what is the direction of the spin axis of
the particle?”. The state then transforms from the original state to a pure state, which is the
unique state lying on the conic that has that axis of spin. Similar formulae apply for higher spin
systems, in which case the defining structure involves a rational curve of degree 2s in CP2s (the
twisted cubic curve, the rational quartic curve, and so on). See Brody & Hughston (2001) for a
discussion of the geometry of higher spin systems and the role played by rational curves.

More generally, one obtains a broader class of “coherent” measurements based on the Veronese
embedding of CPn−1 as a rational variety of degree d in CPN−1, where N is given by (3). For
example, if n = 3, we obtain the embedding of CP2 as a rational surface of degree d in CPN−1

for N = 1
2(d + 1)(d + 2). These varieties are the manifolds of so-called generalized coherent

states or SU(n) coherent states (Brody & Graefe 2010). Hence starting from an arbitrary pure
or mixed state of the system, the outcome of the measurement results in a coherent state.

Another class of UQM that one can consider, which we hope to discuss elsewhere, allows for
a direct measurement of the “mean energy” of a quantum system. In this case, the additional
structure required is the specification of a Hamiltonian operator. Unlike a standard projective
measurement of the energy, the outcome of a mean-energy measurement lies in a continuum of
possible values between the highest and lowest eigenvalues of the Hamiltonian. The mean-energy
measurement operation is closely linked to the existence of the so-called mean-energy ensemble
(Brody & Hughston 1998, 1999), and may be of some relevance in connection with the quantum
thermodynamics of finite systems.

It is interesting to observe that nearly all of the examples we have considered rely rather
heavily, or at least so it seems, on what Mielnik (2001) refers to as the “Ptolomean structure” of
quantum mechanics—namely, the endless hierarchy of tensor products of Hilbert spaces, along
with the various notions of entanglement thus entailed, upon which so many of the modern
finite-dimensional applications of the theory appear to rest.

But it is an open question whether the Ptolomean structure really is an essential part of
physics. Can it be softened somewhat, perhaps in the way in which the rigid Minkowskian
geometry of special relativity survives in a weaker sense in the tangent space of a general
relativistic space-time? This idea is one of the motivations for the geometric approach to
quantum mechanics (see, e.g., Ashtekar & Schilling 1998, Bengtsson & Życzkowski 2006, Brody
& Hughston 2001, Gibbons 1992, Hughston 1995, 1996, Kibble 1979, Mielnik 1968, 1974, and
references cited therein). But whereas most of the attempts at generalizing quantum theory have
focussed either on the consideration of generalized state spaces, or generalizations of the notion
of observables as phase space functions, relatively little has been pursued so far in the direction
of generalized measurements in the context of a nonlinear theory. It makes sense therefore to
consider first those classes of operations that depend only on a minimal amount of structure.
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