105 research outputs found

    Search of dark-matter axions in the microwave frequency range with full-wave modal techniques

    Get PDF
    Axions, originally proposed to solve the strong Charge-Parity problem of Quantum Chromo-Dynamics theory, emerge now as leading candidates of dark matter. In fact, the search of dark-matter axions in the microwave frequency range has been developed by different research groups during the last twenty years. In this demanding scenario, several microwave passive components (haloscopes) have been designed and fabricated for such axions detection based on the use of cavities and multi-cavities. From an electromagnetic point of view, comercial software (ANSFT HFSS, CST MICROWAVE STUDIO, etc ) has been employed for the design of different kind of haloscopes. In this work we propose to use the BI-RME 3D method (Boundary Integral – Resonant Mode Expansion) as an alternative to analyze the axion-photon coupling existing within an haloscope. This full-wave modal technique has provided interesting wide-band results for the design of new haloscopes

    Search for neutral long-lived particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb of proton-proton collision data collected by the ATLAS detector at the LHC in 2015–2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of c times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV. [Figure not available: see fulltext.

    Search for tt¯ resonances in fully hadronic final states in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a tt¯ pair with mass above 1.4 TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z′ boson in a topcolor-assisted-technicolor model. The Z′ boson masses below 3.9 and 4.7 TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively. [Figure not available: see fulltext.

    Test of CP Invariance in Higgs Boson Vector-Boson-Fusion Production Using the H→γγ Channel with the ATLAS Detector

    Get PDF
    A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the H→γγ channel using 139  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data. Constraints are set on the parameters describing the strength of the CP-odd component in the coupling between the Higgs boson and the electroweak gauge bosons in two effective field theory bases: d[over ˜] in the HISZ basis and c_{HW[over ˜]} in the Warsaw basis. The results presented are the most stringent constraints on CP violation in the coupling between Higgs and weak bosons. The 95% C.L. constraint on d[over ˜] is derived for the first time and the 95% C.L. constraint on c_{HW[over ˜]} has been improved by a factor of 5 compared to the previous measurement

    Observation of the γγ→ττ Process in Pb+Pb Collisions and Constraints on the τ-Lepton Anomalous Magnetic Moment with the ATLAS Detector

    Get PDF
    This Letter reports the observation of τ-lepton-pair production in ultraperipheral lead-lead collisions Pb+Pb→Pb(γγ→ττ)Pb and constraints on the τ-lepton anomalous magnetic moment a_{τ}. The dataset corresponds to an integrated luminosity of 1.44  nb^{-1} of LHC Pb+Pb collisions at sqrt[s_{NN}]=5.02  TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ-lepton decay, an electron or charged-particle track(s) from the other τ-lepton decay, little additional central-detector activity, and no forward neutrons. The γγ→ττ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations and a signal strength of μ_{ττ}=1.03_{-0.05}^{+0.06} assuming the standard model value for a_{τ}. To measure a_{τ}, a template fit to the muon transverse-momentum distribution from τ-lepton candidates is performed, using a dimuon (γγ→μμ) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a_{τ} is -0.057<a_{τ}<0.024

    Observation of Single-Top-Quark Production in Association with a Photon Using the ATLAS Detector

    Get PDF
    This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139  fb^{-1} of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688±23(stat) _{-71}^{+75}(syst)  fb, to be compared with the standard model prediction of 515_{-42}^{+36}  fb at next-to-leading order in QCD

    Measurement of the Z(-> l(+)l(-))gamma production cross-section in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    The production of a prompt photon in association with a Z boson is studied in proton-proton collisions at a centre-of-mass energy s = 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process pp → ℓℓγ + X (ℓ = e, μ) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the ℓℓγ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered. [Figure not available: see fulltext.]

    Measurement of isolated-photon plus two-jet production in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data. [Figure not available: see fulltext.

    Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at s =13 TeV with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a W or Z boson and a Higgs boson produced in proton-proton collisions at the Large Hadron Collider at s=13 TeV is presented. The analysis utilizes the dominant W→qq¯′ or Z→qq¯ and H→bb¯ decays with substructure techniques applied to large-radius jets. A sample corresponding to an integrated luminosity of 139 fb-1 collected with the ATLAS detector is analyzed and no significant excess of data is observed over the background prediction. The results are interpreted in the context of the heavy vector triplet model with spin-1 W′ and Z′ bosons. Upper limits on the cross section are set for resonances with mass between 1.5 and 5.0 TeV, ranging from 6.8 to 0.53 fb for W′→WH and from 8.7 to 0.53 fb for Z′→ZH at the 95% confidence level

    Measurements of top-quark pair differential and double-differential cross-sections in the l plus jets channel with pp collisions at root s=13 TeV using the ATLAS detector

    Get PDF
    Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and t t system and jet multiplicities. The study was performed using data from pp collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of 36 fb-1. Due to the large tt cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data
    corecore