6 research outputs found
Solar neutrino detection sensitivity in DARWIN via electron scattering
We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the13N, 15O and pep components is hindered by the doublebeta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle,sin2 θw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1â2.5Ď significance, independent of external measurements from other experiments or a measurement of8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe
Improving the light collection efficiency of silicon photomultipliers through the use of metalenses
Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3Ă1.3 mm² SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay
Dependence of polytetrafluoroethylene reflectance on thickness at visible and ultraviolet wavelengths in air
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE reflectance for thicknesses from 5 mm to 10 mm ranges from 92.5% to 94.5% at 450 nm, and from 90.0% to 92.0% at 260 nm. We also see that the reflectance of PTFE of a given thickness can vary by as much as 2.7% within the same piece of material. Finally, we show that placing a specular reflector behind the PTFE can recover the loss of reflectance in the visible without introducing a specular component in the reflectance
Erratum to: Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136 Xe
Abstract We correct an overestimation of the production rate of 137 Xe in the DARWIN detector operated at LNGS. This formerly dominant intrinsic background source is now at a level similar to the irreducible background from solar 8 B neutrinos, thus unproblematic at the LNGS depth. The projected half-life sensitivity for the neutrinoless double beta decay ( 0 ν β β ) of 136 Xe improves by 22 % compared to the previously reported number and is now T 1 / 2 0 ν = 3.0 à 10 27 yr (90% C.L.) after 10 years of DARWIN operation