3 research outputs found

    Deep learning for semi-automated unidirectional measurement of lung tumor size in CT

    No full text
    Abstract Background Performing Response Evaluation Criteria in Solid Tumor (RECISTS) measurement is a non-trivial task requiring much expertise and time. A deep learning-based algorithm has the potential to assist with rapid and consistent lesion measurement. Purpose The aim of this study is to develop and evaluate deep learning (DL) algorithm for semi-automated unidirectional CT measurement of lung lesions. Methods This retrospective study included 1617 lung CT images from 8 publicly open datasets. A convolutional neural network was trained using 1373 training and validation images annotated by two radiologists. Performance of the DL algorithm was evaluated 244 test images annotated by one radiologist. DL algorithm’s measurement consistency with human radiologist was evaluated using Intraclass Correlation Coefficient (ICC) and Bland-Altman plotting. Bonferroni’s method was used to analyze difference in their diagnostic behavior, attributed by tumor characteristics. Statistical significance was set at

    Subconcussive impacts and imaging findings over a season of contact sports

    No full text
    The effect of repeated subconcussive head impacts in youth and high school sports on the developing brain is poorly understood. Emerging neuroimaging data correlated with biomechanical exposure metrics are beginning to demonstrate relationships across a variety of modalities. The long-term consequences of these changes are unknown. A review of the currently available literature on the effect of subconcussive head impacts on youth and high school-age male football players provides compelling evidence for more focused studies of these effects in these vulnerable populations
    corecore