182 research outputs found
A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-wave Applications
Kinetic inductance detectors (KIDs) show promise as a competitive technology
for astronomical observations over a wide range of wavelengths. We are
interested in comparing the fundamental limitations to the sensitivity of KIDs
with that of transition edge sensors (TESs) at millimeter wavelengths,
specifically over the wavelengths required for studies of the Cosmic Microwave
Background (CMB). We calculate the total fundamental noise arising from optical
and thermal excitations in TESs and KIDs for a variety of bath temperatures and
optical loading scenarios for applications at millimeter wavelengths. Special
consideration is given to the case of ground-based observations of 100 GHz
radiation with a 100 mK bath temperature, conditions consistent with the
planned second module of the QUBIC telescope, a CMB instrument. Under these
conditions, a titanium nitride KID with optimized critical temperature pays a
few percent noise penalty compared to a typical optimized TES.Comment: 6 pages, 2 figures, Proceedings of 15th International Workshop on Low
Temperature Detectors (LTD-15, Pasadena, California, June 2013), To be
published in the Journal of Low Temperature Physics (JLTP
Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films
We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature
Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data
We present measurements of the -mode polarization angular auto-power
spectrum () and temperature--mode cross-power spectrum () of the
cosmic microwave background (CMB) using 150 GHz data from three seasons of
SPTpol observations. We report the power spectra over the spherical harmonic
multipole range , and detect nine acoustic peaks in the
spectrum with high signal-to-noise ratio. These measurements are the most
sensitive to date of the and power spectra at and , respectively. The observations cover 500 deg, a fivefold increase
in area compared to previous SPTpol analyses, which increases our sensitivity
to the photon diffusion damping tail of the CMB power spectra enabling tighter
constraints on \LCDM model extensions. After masking all sources with
unpolarized flux mJy we place a 95% confidence upper limit on residual
polarized point-source power of at , suggesting that the damping tail
dominates foregrounds to at least with modest source masking. We
find that the SPTpol dataset is in mild tension with the model
(), and different data splits prefer parameter values that differ
at the level. When fitting SPTpol data at we
find cosmological parameter constraints consistent with those for
temperature. Including SPTpol data at results in a preference for
a higher value of the expansion rate (H_0 = 71.3 \pm
2.1\,\mbox{km}\,s^{-1}\mbox{Mpc}^{-1} ) and a lower value for present-day
density fluctuations ().Comment: Updated to match version accepted to ApJ. 34 pages, 17 figures, 6
table
Design and Bolometer Characterization of the SPT-3G First-year Focal Plane
During the austral summer of 2016-17, the third-generation camera, SPT-3G,
was installed on the South Pole Telescope, increasing the detector count in the
focal plane by an order of magnitude relative to the previous generation.
Designed to map the polarization of the cosmic microwave background, SPT-3G
contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and
dual-polarization pixels, read out using 68x frequency-domain multiplexing.
Here we discuss design, assembly, and layout of the modules, as well as early
performance characterization of the first-year array, including yield and
detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted
for publication: 27 August 201
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power
spectrum () of the cosmic microwave background (CMB) using observations of
a field made by SPT-3G in 2018. We report
multifrequency power spectrum measurements at 95, 150, and 220GHz covering the
angular multipole range . We combine this
measurement with the published polarization power spectrum measurements from
the 2018 observing season and update their associated covariance matrix to
complete the SPT-3G 2018 data set. This is the first analysis to
present cosmological constraints from SPT , , and power spectrum
measurements jointly. We blind the cosmological results and subject the data
set to a series of consistency tests at the power spectrum and parameter level.
We find excellent agreement between frequencies and spectrum types and our
results are robust to the modeling of astrophysical foregrounds. We report
results for CDM and a series of extensions, drawing on the following
parameters: the amplitude of the gravitational lensing effect on primary power
spectra , the effective number of neutrino species
, the primordial helium abundance , and the
baryon clumping factor due to primordial magnetic fields . We find that the
SPT-3G 2018 data are well fit by CDM with a
probability-to-exceed of . For CDM, we constrain the expansion
rate today to and the
combined structure growth parameter to . The SPT-based
results are effectively independent of Planck, and the cosmological parameter
constraints from either data set are within of each other.
(abridged)Comment: 35 Pages, 17 Figures, 11 Table
Measurements of B-mode Polarization of the Cosmic Microwave Background from 500 Square Degrees of SPTpol Data
We report a B-mode power spectrum measurement from the cosmic microwave
background (CMB) polarization anisotropy observations made using the SPTpol
instrument on the South Pole Telescope. This work uses 500 deg of SPTpol
data, a five-fold increase over the last SPTpol B-mode release. As a result,
the bandpower uncertainties have been reduced by more than a factor of two, and
the measurement extends to lower multipoles: . Data from both
95 and 150 GHz are used, allowing for three cross-spectra: 95 GHz x 95 GHz, 95
GHz x 150 GHz, and 150 GHz x 150 GHz. B-mode power is detected at very high
significance; we find , corresponding to a
detection of power. An upper limit is set on the tensor-to-scalar
ratio, at 95% confidence (the expected constraint on
given the measurement uncertainties is 0.22). We find the measured B-mode power
is consistent with the Planck best-fit CDM model predictions. Scaling
the predicted lensing B-mode power in this model by a factor Alens, the data
prefer Alens = . These data are currently the most precise
measurements of B-mode power at .Comment: 16 pages, 4 figures, Submitted to PR
- …