3,722 research outputs found

    Approach to a rational rotation number in a piecewise isometric system

    Full text link
    We study a parametric family of piecewise rotations of the torus, in the limit in which the rotation number approaches the rational value 1/4. There is a region of positive measure where the discontinuity set becomes dense in the limit; we prove that in this region the area occupied by stable periodic orbits remains positive. The main device is the construction of an induced map on a domain with vanishing measure; this map is the product of two involutions, and each involution preserves all its atoms. Dynamically, the composition of these involutions represents linking together two sector maps; this dynamical system features an orderly array of stable periodic orbits having a smooth parameter dependence, plus irregular contributions which become negligible in the limit.Comment: LaTeX, 57 pages with 13 figure

    Higher-order non-symmetric counterterms in pure Yang-Mills theory

    Full text link
    We analyze the restoration of the Slavnov-Taylor (ST) identities for pure massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization scheme with IR regulator. We obtain the most general form of the action-like part of the symmetric regularized action, obeying the relevant ST identities and all other relevant symmetries of the model, to all orders in the loop expansion. We also give a cohomological characterization of the fulfillment of BPHZL IR power-counting criterion, guaranteeing the existence of the limit where the IR regulator goes to zero. The technique analyzed in this paper is needed in the study of the restoration of the ST identities for those models, like the MSSM, where massless particles are present and no invariant regularization scheme is known to preserve the full set of ST identities of the theory.Comment: Final version published in the journa

    Geometric representation of interval exchange maps over algebraic number fields

    Full text link
    We consider the restriction of interval exchange transformations to algebraic number fields, which leads to maps on lattices. We characterize renormalizability arithmetically, and study its relationships with a geometrical quantity that we call the drift vector. We exhibit some examples of renormalizable interval exchange maps with zero and non-zero drift vector, and carry out some investigations of their properties. In particular, we look for evidence of the finite decomposition property: each lattice is the union of finitely many orbits.Comment: 34 pages, 8 postscript figure

    Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space

    Get PDF
    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with non-hierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent \gamma= 2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power-laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution figures is available at http://www.pks.mpg.de/~edugal

    On a class of embeddings of massive Yang-Mills theory

    Full text link
    A power-counting renormalizable model into which massive Yang-Mills theory is embedded is analyzed. The model is invariant under a nilpotent BRST differential s. The physical observables of the embedding theory, defined by the cohomology classes of s in the Faddeev-Popov neutral sector, are given by local gauge-invariant quantities constructed only from the field strength and its covariant derivatives.Comment: LATEX, 34 pages. One reference added. Version published in the journa

    Interacting fermions and domain wall defects in 2+1 dimensions

    Full text link
    We consider a Dirac field in 2+1 dimensions with a domain wall like defect in its mass, minimally coupled to a dynamical Abelian vector field. The mass of the fermionic field is assumed to have just one linear domain wall, which is externally fixed and unaffected by the dynamics. We show that, under some general conditions on the parameters, the localized zero modes predicted by the Callan and Harvey mechanism are stable under the electromagnetic interaction of the fermions

    A Generalized Gauge Invariant Regularization of the Schwinger Model

    Full text link
    The Schwinger model is studied with a new one - parameter class of gauge invariant regularizations that generalizes the usual point - splitting or Fujikawa schemes. The spectrum is found to be qualitatively unchanged, except for a limiting value of the regularizing parameter, where free fermions appear in the spectrum.Comment: 16 pages, SINP/TNP/93-1

    Dynamical Breakdown of Symmetry in a (2+1) Dimensional Model Containing the Chern-Simons Field

    Full text link
    We study the vacuum stability of a model of massless scalar and fermionic fields minimally coupled to a Chern-Simons field. The classical Lagrangian only involves dimensionless parameters, and the model can be thought as a (2+1) dimensional analog of the Coleman-Weinberg model. By calculating the effective potential, we show that dynamical symmetry breakdown occurs in the two-loop approximation. The vacuum becomes asymmetric and mass generation, for the boson and fermion fields takes place. Renormalization group arguments are used to clarify some aspects of the solution.Comment: Minor modifications in the text and figure

    On the trace identity in a model with broken symmetry

    Get PDF
    Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show the validity of a trace identity -- to all orders of perturbation theory -- playing the role of a Callan-Symanzik equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space background, represented by the non-propagating external vielbein field, we can express the conservation of the energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik equation'' then is the anomalous Ward identity for the trace of the energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.

    Is the classical Bukhvostov-Lipatov model integrable? A Painlev\'e analysis

    Full text link
    In this work we apply the Weiss, Tabor and Carnevale integrability criterion (Painlev\'e analysis) to the classical version of the two dimensional Bukhvostov-Lipatov model. We are led to the conclusion that the model is not integrable classically, except at a trivial point where the theory can be described in terms of two uncoupled sine-Gordon models
    corecore