114 research outputs found

    Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature

    Get PDF
    Using the guinea pig as a model host, we show that aerosol spread of influenza virus is dependent upon both ambient relative humidity and temperature. Twenty experiments performed at relative humidities from 20% to 80% and 5 °C, 20 °C, or 30 °C indicated that both cold and dry conditions favor transmission. The relationship between transmission via aerosols and relative humidity at 20 °C is similar to that previously reported for the stability of influenza viruses (except at high relative humidity, 80%), implying that the effects of humidity act largely at the level of the virus particle. For infected guinea pigs housed at 5 °C, the duration of peak shedding was approximately 40 h longer than that of animals housed at 20 °C; this increased shedding likely accounts for the enhanced transmission seen at 5 °C. To investigate the mechanism permitting prolonged viral growth, expression levels in the upper respiratory tract of several innate immune mediators were determined. Innate responses proved to be comparable between animals housed at 5 °C and 20 °C, suggesting that cold temperature (5 °C) does not impair the innate immune response in this system. Although the seasonal epidemiology of influenza is well characterized, the underlying reasons for predominant wintertime spread are not clear. We provide direct, experimental evidence to support the role of weather conditions in the dynamics of influenza and thereby address a long-standing question fundamental to the understanding of influenza epidemiology and evolution

    Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain

    Get PDF
    Although highly effective in the general population when well matched to circulating influenza virus strains, current influenza vaccines are limited in their utility due to the narrow breadth of protection they provide. The strain specificity of vaccines presently in use mirrors the exquisite specificity of the neutralizing antibodies that they induce, that is, antibodies which bind to the highly variable globular head domain of hemagglutinin (HA). Herein, we describe the construction of a novel immunogen comprising the conserved influenza HA stalk domain and lacking the globular head. Vaccination of mice with this headless HA construct elicited immune sera with broader reactivity than those obtained from mice immunized with a full-length HA. Furthermore, the headless HA vaccine provided full protection against death and partial protection against disease following lethal viral challenge. Our results suggest that the response induced by headless HA vaccines is sufficiently potent to warrant their further development toward a universal influenza virus vaccine

    Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets

    Get PDF
    Human influenza A viruses are known to be transmitted via the air from person to person. It is unknown from which anatomical site of the respiratory tract influenza A virus transmission occurs. Here, pairs of genetically tagged and untagged influenza A/H1N1, A/H3N2 and A/H5N1 viruses that are transmissible via the air are used to co-infect donor ferrets via the intranasal and intratracheal routes to cause an upper and lower respiratory tract infection, respectively. In all transmission cases, we observe that the viruses in the recipient ferrets are of the same genotype as the viruses inoculated intranasally, demonstrating that they are expelled from the upper respiratory tract of ferrets rather than from trachea or the lower airways. Moreover, influenza A viruses that are transmissible via the air preferentially infect ferret and human nasal respiratory epithelium. These results indicate that virus replication in the upper respiratory tract, the nasal respiratory epithelium in particular, of donors is a driver for transmission of influenza A viruses via the air

    Field Research Is Essential to Counter Virological Threats

    Get PDF
    The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.</p

    Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine

    Get PDF
    15 Pág. Centro de Investigación en Sanidad Animal (CISA)Influenza A viruses (IAV) remain emerging threats to human public health. Live-attenuated influenza vaccines (LAIV) are one of the most effective prophylactic options to prevent disease caused by influenza infections. However, licensed LAIV remain restricted for use in 2- to 49-year-old healthy and nonpregnant people. Therefore, development of LAIV with increased safety, immunogenicity, and protective efficacy is highly desired. The U.S.-licensed LAIV is based on the master donor virus (MDV) A/Ann Arbor/6/60 H2N2 backbone, which was generated by adaptation of the virus to growth at low temperatures. Introducing the genetic signature of the U.S. MDV into the backbone of other IAV strains resulted in varying levels of attenuation. While the U.S. MDV mutations conferred an attenuated phenotype to other IAV strains, the same amino acid changes did not significantly attenuate the pandemic A/California/04/09 H1N1 (pH1N1) strain. To attenuate pH1N1, we replaced the conserved leucine at position 319 with glutamine (L319Q) in PB1 and analyzed the in vitro and in vivo properties of pH1N1 viruses containing either PB1 L319Q alone or in combination with the U.S. MDV mutations using two animal models of influenza infection and transmission, ferrets and guinea pigs. Our results demonstrated that L319Q substitution in the pH1N1 PB1 alone or in combination with the mutations of the U.S. MDV resulted in reduced pathogenicity (ferrets) and transmission (guinea pigs), and an enhanced temperature sensitive phenotype. These results demonstrate the feasibility of generating an attenuated MDV based on the backbone of a contemporary pH1N1 IAV strain. IMPORTANCE Vaccination represents the most effective strategy to reduce the impact of seasonal IAV infections. Although LAIV are superior in inducing protection and sterilizing immunity, they are not recommended for many individuals who are at high risk for severe disease. Thus, development of safer and more effective LAIV are needed. A concern with the current MDV used to generate the U.S.-licensed LAIV is that it is based on a virus isolated in 1960. Moreover, mutations that confer the temperature-sensitive, cold-adapted, and attenuated phenotype of the U.S. MDV resulted in low level of attenuation in the contemporary pandemic A/California/04/09 H1N1 (pH1N1). Here, we show that introduction of PB1 L319Q substitution, alone or in combination with the U.S. MDV mutations, resulted in pH1N1 attenuation. These findings support the development of a novel LAIV MDV based on a contemporary pH1N1 strain as a medical countermeasure against currently circulating H1N1 IAV.This research was partially funded by the New York Influenza Center of Excellence (NYICE) (HHSN 272201400005C), and Emory-UGA (HHSN 272201400004C), members of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Department of Health and Human Services, Centers of Excellence for Influenza Research and Surveillance (CEIRS) network. The work was also supported by grants W81XWH-18-1-0460-PRMRP-DA (to L.M.-S.) and W81XWH-17-1-0168 (to S.D.) from the Department of Defense (DoD) Peer Reviewed Medical Research Program (PRMRP), as well as NIH R01 AI145332-01 (to L.M.-S.). This research was also partly funded by NIAID grant P01AI097092, by CEIRR (Center for Research on Influenza Pathogenesis and Transmission), a NIAID funded Center of Excellence for Influenza Research and Response (CEIRR, contract # 75N93021C00014) and by the Collaborative Influenza Vaccine Innovation Centers NIAID contract 75N93019C00051 to AG-S. A.N. received a “Ramon y Cajal” Incorporation grant (RYC-2017) from the Spanish Ministry of Science, Innovation. Finally, A.C. received support from NIH grants T32GM068411 and T32GM007356. Use of the Zeiss AxioImager.Z2 microscope and image analysis was performed at the Microscopy CoRE at the Icahn School of Medicine at Mount Sinai.Peer reviewe

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    It's in the mix: Reassortment of segmented viral genomes.

    No full text

    Characterization of untranslated regions of the Bunyamwera virus genome using reverse genetics

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    High Temperature (30°C) Blocks Aerosol but Not Contact Transmission of Influenza Virus▿

    No full text
    Influenza causes significant morbidity in tropical regions; however, unlike in temperate zones, influenza in the tropics is not strongly associated with a given season. We have recently shown that influenza virus transmission in the guinea pig model is most efficient under cold, dry conditions, which are rare in the tropics. Herein, we report the lack of aerosol transmission at 30°C and at all humidities tested. Conversely, transmission via the contact route was equally efficient at 30°C and 20°C. Our data imply that contact or short-range spread predominates in the tropics and offer an explanation for the lack of a well-defined, recurrent influenza season affecting tropical and subtropical regions of the world
    corecore