228 research outputs found

    Sequential intravascular ultrasound of the mechanisms of rotational atherectomy and adjunct balloon angioplasty

    Get PDF
    AbstractObjectives. The purpose of this study was to use sequential intravascular ultrasound imaging before intervention, after rotational atherectomy and after adjunct balloon angioplasty to characterize the mechanisms of lumen enlargement after each.Background. Rotational atherectomy uses a high speed, rotating, diamond-tipped elliptic burr to abrade atherosclerotic plaque to increase lumen size. In vitro studies have shown that high speed rotational atherectomy selectively abrades hard, especially calcified, plaque elements. However, rotational atherectomy procedures usually require adjunct balloon angioplasty.Methods. Forty-eight lesions in 46 patients were treated with rotational atherectomy followed by adjunct balloon angioplasty in 44. Quantitative coronary arteriographic and intravascular ultrasound measurements of the target lesion were made before intervention, after rotational atherectomy and after balloon angioplasty.Results. Before intervention, target lesion external elastic membrane area measured 17.3 ± 5.9 mm2, lumen area measured 1.8 ± 0.9 mm2and plaque plus media area measured 15.7 ± 4.1 mm2. After rotational atherectomy, lumen area increased, plaque plus media area decreased, arc of target lesion calcium decreased and 26% of the target lesions had dissection planes After adjunct balloon angioplasty, external elastic membrane area increased, lumen area increased, plaque plus media area did not change and 77% of the target lesions had dissection planes. Arterial expansion was seen in 80% of lesions. The pattern of dissection plane location, which was predominantly within calcified plaque after rotational atherectomy, became predominantly adjacent to calcified plaque after adjunct balloon angioplasty (p = 0.008).Conclusions. Sequential intravascular ultrasound imaging shows that high speed rotational atherectomy causes lumen enlargement by selective ablation of hard, especially calcific, atherosclerotic plaque with little tissue disruption and rare arterial expansion. Adjunct balloon angioplasty further increased lumen area by a combination of arterial dissection and arterial expansion, especially of compliant, noncalcified plaque elements

    Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease A feasibility study

    Get PDF
    AbstractObjectivesWe conducted a pilot study to evaluate the feasibility of transendocardial delivery of autologous bone marrow (ABM) strategy in patients with severe symptomatic chronic myocardial ischemia not amenable to conventional revascularization.BackgroundTransendocardial injection of ABM cells appears to enhance perfusion of ischemic porcine myocardium.MethodsTen patients underwent transendocardial injection of freshly aspirated and filtered unfractionated ABM using left ventricular electromechanical guidance. Twelve injections of 0.2 ml each were successfully delivered into ischemic noninfarcted myocardium pre-identified by single-photon emission computed tomography perfusion imaging.ResultsAutologous bone marrow injection was successful in all patients and was associated with no serious adverse effects; in particular, there was no arrhythmia, evidence of infection, myocardial inflammation, or increased scar formation. Two patients were readmitted for recurrent chest pain. At three months, Canadian Cardiovascular Society angina score significantly improved (3.1 ± 0.3 vs. 2.0 ± 0.94, p = 0.001), as well as stress-induced ischemia occurring within the injected territories (2.1 ± 0.8 vs. 1.6 ± 0.8, p < 0.001). Treadmill exercise duration, available in nine patients, increased, but the change was not significant (391 ± 155 vs. 485 ± 198, p = 0.11).ConclusionsThis study provides preliminary clinical data indicating feasibility of catheter-based transendocardial delivery of ABM to ischemic myocardium
    corecore