1,353 research outputs found

    The effect of fuel-to-air ratio on burner-rig hot corrosion

    Get PDF
    Samples of a cobalt-base alloy, Mar M-509, were subjected to hot corrosion in a Mach-0.3 burner rig. The corrodent was NaCl added as an aqueous solution to the combustion products of a sulfur-containing Jet-A fuel. The metal temperature was fixed at 900 C. The extent of hot corrosion increased by a factor of three as the fuel-to-air mass ratio was increased from 0.033 to 0.050. Because the depositing salt was always Na2SO4, the increased attack appeared to be related to the gas composition

    The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    Get PDF
    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations

    Critical research and advanced technology (CRT) support project

    Get PDF
    A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished

    Cardiovascular System Studies

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 5T1 HE 5550-02

    Nuclear Reaction Rates in a Plasma

    Full text link
    The problem of determining the effects of the surrounding plasma on nuclear reaction rates in stars is formulated ab initio, using the techniques of quantum statistical mechanics. We derive a result that expresses the complete effects of Coulomb barrier penetration and of the influence of the surrounding plasma in terms of matrix elements of well defined operators. We find that possible "dynamical screening" effects that have been discussed in the literature are absent. The form of our results suggests that an approach that relies on numerical calculations of the correlation functions in a classical Coulomb gas, followed by construction of an effective two body potential and a quantum barrier penetration calculation, will miss physics that is as important as the physics that it includes.Comment: 66 pages, revtex, Errors Fixed, Explanation Adde

    Single-electron transport through the vortex core levels in clean superconductors

    Full text link
    We develop a microscopic theory of single-electron transport in N-S-N hybrid structures in the presence of applied magnetic field introducing vortex lines in a superconductor layer. We show that vortex cores in a thick and clean superconducting layer are similar to mesoscopic conducting channels where the bound core states play the role of transverse modes. The transport through not very thick layers is governed by another mechanism, namely by resonance tunneling via vortex core levels. We apply our method to calculation of the thermal conductance along the magnetic field.Comment: 4 pages, 1 figur

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    On pancultural self-enhancement: well-adjusted Taiwanese self-enhance on personally valued traits

    Get PDF
    Taiwanese participants made better-than-average judgments on collectivistic and individualistic traits, evaluated the personal importance of those traits, and completed measures of psychological adjustment (depression, perceived stress, subjective well-being, and satisfaction with life). Replicating findings from other East Asian samples, participants self-enhanced (i.e., regarded the self as superior to peers) more on collectivistic than individualistic attributes and assigned higher personal importance to the former than the latter. Moreover, better adjusted participants manifested a stronger tendency to self-enhance on personally important attributes. These data are consistent with the view that self-enhancement is a universal human motive that is expressed tactically and at odds with the assertion that self-enhancement is a uniquely Western phenomenon. <br/
    • …
    corecore