15,331 research outputs found
Exploring Deep Space: Learning Personalized Ranking in a Semantic Space
Recommender systems leverage both content and user interactions to generate
recommendations that fit users' preferences. The recent surge of interest in
deep learning presents new opportunities for exploiting these two sources of
information. To recommend items we propose to first learn a user-independent
high-dimensional semantic space in which items are positioned according to
their substitutability, and then learn a user-specific transformation function
to transform this space into a ranking according to the user's past
preferences. An advantage of the proposed architecture is that it can be used
to effectively recommend items using either content that describes the items or
user-item ratings. We show that this approach significantly outperforms
state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho
Adaptive group formation to promote desired behaviours
BACKGROUND There is substantial literature that shows the benefits of collaborative work, though these benefits vary enormously with circumstances. Irrespective of their structure and composition, groups usually exist for a particular reason and implicitly or explicitly target one or more outcomes. The achievements of group outcomes depend on many factors, including the individual behaviour of each group member. These behaviours are, in turn, affected by the individual characteristics, the context and the group composition. Constructing groups in a way that maximises the achievement of a specific outcome is complex with the optimal group composition depending on the attributes of the group members. Previous work has in most cases considered group formation based on one particular attribute, such as learning style, gender, personality, etc. Less common are instances of group formation rules being adjusted systematically to accommodate changes in an individualâs attributes or disposition. PURPOSE This paper considers how the multi-factorial nature of group performance and the variations in desired behaviour across different circumstances can be addressed within a consistent framework. DESIGN/METHOD The methodology consisted of two main stages. In the first stage, a simulation was encoded in MatLab to assess the conceptual approach of progressively updating rules for group formation. The method uses an unsupervised learning algorithm and correlation factors between quantifiable group characteristics (average age, degree of motivation, etc.) and resultant behaviours of the groups that are actually formed (level of dialogue, interface interactions, etc.) to update the rules used for group formation, and hence progressively construct groups that are more likely to behave in desired ways. The second stage involved an evaluation of this approach in a real world scenario using remotely accessible laboratories where engineering students voluntarily participated in a study in April 2012. RESULTS The simulation results show that under certain conditions the desired behaviour chosen with the intention of improving specific learning outcomes can be optimized and that groups can be constructed that are more likely to exhibit desired behaviour. The paper also reports preliminary evidence that shows the feasibility of this approach in selecting group participants in an engineering class to promote a desired outcome in this case independent learning. CONCLUSIONS This study demonstrates the feasibility of using a set of individual characteristics of group members to form groups that are more likely to have desired group behaviours and that these characteristics can be monitored and updated to dynamically alter group formation to account for changes in any individualâs characteristics. This has potential to allow groups formation decisions to be made dynamically to achieve a desired outcome, for example promote collaborative learning
Modeling nonlinear systems using multiple piecewise linear equations
This paper describes a technique for modeling nonlinear systems using multiple piecewise linear equations. The technique provides a means for linearizing the nonlinear system in such a way as to not limit the large signal behavior of the target system. The nonlinearity in the target system must be able to be represented as a piecewise linear function. A simple third order nonlinear system is used to demonstrate the technique. The behavior of the modeled system is compared to the behavior of the nonlinear system
Indigenous student literacy outcomes in Australia: a systematic review of literacy programmes
Improving Indigenous studentsâ literacy is a major priority area for the Australian Government, receiving significant funding to address below benchmark English literacy standardised test results. Despite this, recent benchmark tests suggest Indigenous students continue to achieve well below the national average. This systematic review discusses peer-reviewed and evidence-based publications that report on significant literacy programmes to investigate which aspects of literacy are their focus, which are identified as successful, conditions needed for success, barriers to success and measures of success. While most programs reported significant literacy improvements, all identified barriers to success and/or sustainability as outlined in this paper. This review also utilises the four resources literacy model and multiliteracies theories to map literacy gaps. When considering decades of literacy research, there were significant gaps in the represented literacy skills, with the dominant focus on codebreaking, and very few programs addressing critical literacies, multiliteracies or creativity skills. The review of the papers highlighted the need for consideration of ways to design balanced and place-based literacy programs; school-community literacy partnerships; access to training and resources for schools and communities around literacy and school/community research projects and agency for teacher and school leaders to be professional context-based decision-makers
Holographic representation of local bulk operators
The Lorentzian AdS/CFT correspondence implies a map between local operators
in supergravity and non-local operators in the CFT. By explicit computation we
construct CFT operators which are dual to local bulk fields in the
semiclassical limit. The computation is done for general dimension in global,
Poincare and Rindler coordinates. We find that the CFT operators can be taken
to have compact support in a region of the complexified boundary whose size is
set by the bulk radial position. We show that at finite N the number of
independent commuting operators localized within a bulk volume saturates the
holographic bound.Comment: 36 pages, LaTeX, 4 eps figure
Re-identification of c. 15 700 cal yr BP tephra bed at Kaipo Bog, eastern North Island: implications for dispersal of Rotorua and Puketarata tephra beds.
A 10 mm thick, c. 15 700 calendar yr BP (c. 13 100 14C yr BP) rhyolitic tephra bed in the well-studied montane Kaipo Bog sequence of eastern North Island was previously correlated with Maroa-derived Puketarata Tephra. We revise this correlation to Okataina-derived Rotorua Tephra based on new compositional data from biotite phenocrysts and glass. The new correlation limits the known dispersal of Puketarata Tephra (sensu stricto, c. 16 800 cal yr BP) and eliminates requirements to either reassess its age or to invoke dual Puketarata eruptive events. Our data show that Rotorua Tephra comprises two glass-shard types: an early-erupted low-K2O type that was dispersed mostly to the northwest, and a high-K2O type dispersed mostly to the south and southeast, contemporary with late-stage lava extrusion. Late-stage Rotorua eruptives contain biotite that is enriched in FeO compared with biotite from Puketarata pyroclastics. The occurrence of Rotorua Tephra in Kaipo Bog (100 km from the source) substantially extends its known distribution to the southeast. Our analyses demonstrate that unrecognised syn-eruption compositional and dispersal changes can cause errors in fingerprinting tephra deposits. However, the compositional complexity, once recognised, provides additional fingerprinting criteria, and also documents magmatic and dispersal processes
Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays
A new technique for coating microtitre plates with molecularly imprinted
polymers (MIP), specific for low-molecular weight analytes (epinephrine,
atrazine) and proteins is presented. Oxidative polymerization was performed in
the presence of template; monomers: 3-aminophenylboronic acid, 3-
thiopheneboronic acid and aniline were polymerized in water and the polymers
were grafted onto the polystyrene surface of the microplates. It was found that
this process results in the creation of synthetic materials with antibody-like
binding properties. It was shown that the MIP-coated microplates are
particularly useful for assay development. The high stability of the polymers
and good reproducibility of the measurements make MIP coating an attractive
alternative to conventional antibodies or receptors used in ELISA
- âŚ