7,985 research outputs found
Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach
This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead
Ballistic-Ohmic quantum Hall plateau transition in graphene pn junction
Recent quantum Hall experiments conducted on disordered graphene pn junction
provide evidence that the junction resistance could be described by a simple
Ohmic sum of the n and p mediums' resistances. However in the ballistic limit,
theory predicts the existence of chirality-dependent quantum Hall plateaus in a
pn junction. We show that two distinctively separate processes are required for
this ballistic-Ohmic plateau transition, namely (i) hole/electron Landau states
equilibration and (ii) valley iso-spin dilution of the incident Landau edge
state. These conclusions are obtained by a simple scattering theory argument,
and confirmed numerically by performing ensembles of quantum magneto-transport
calculations on a 0.1um-wide disordered graphene pn junction within the
tight-binding model. The former process is achieved by pn interface roughness,
where a pn interface disorder with a root-mean-square roughness of 10nm was
found to suffice under typical experimental conditions. The latter process is
mediated by extrinsic edge roughness for an armchair edge ribbon and by
intrinsic localized intervalley scattering centers at the edge of the pn
interface for a zigzag ribbon. In light of these results, we also examine why
higher Ohmic type plateaus are less likely to be observable in experiments.Comment: 9 pages, 6 figure
Characteristics of scour and flow field beneath a forced vibrating circular cylinder
The objective of the study is to enhance the understanding of scour under a steel catenary riser (SCR), in particular the influence of the SCR dynamic motions on scour. The motion of an SCR could be attributed to the motions of the attached floating platform induced by surface waves and/or currents. In this study, a circular cylinder mounted elastically on a forced vibrating rod was installed and three vibration frequencies were tested to simulate this phenomenon. Flow visualization and high time-resolved PIV measurement techniques were applied to observe and measure the flow field around the cylinder. The results show that there are two distinct types of scour processes, depending on the imposed vibration frequency even though they have the same amplitude. Based on the qualitative observation and quantitative measurement of the flow field and turbulence characteristics, the formation and transmission of the vortices are discussed in this paper
Multiple Reggeon Exchange from Summing QCD Feynman Diagrams
Multiple reggeon exchange supplies subleading logs that may be used to
restore unitarity to the Low-Nussinov Pomeron, provided it can be proven that
the sum of Feynman diagrams to all orders gives rise to such multiple regge
exchanges. This question cannot be easily tackled in the usual way except for
very low-order diagrams, on account of delicate cancellations present in the
sum which necessitate individual Feynman diagrams to be computed to subleading
orders. Moreover, it is not clear that sums of high-order Feynman diagrams with
complicated criss-crossing of lines can lead to factorization implied by the
multi-regge scenario. Both of these difficulties can be overcome by using the
recently developed nonabelian cut diagrams. We are then able to show that the
sum of -channel-ladder diagrams to all orders does lead to such multiple
reggeon exchanges.Comment: uu-encoded latex file with 11 postscript figures (20 pages
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable
There has been significant recent interest in parallel graph processing due
to the need to quickly analyze the large graphs available today. Many graph
codes have been designed for distributed memory or external memory. However,
today even the largest publicly-available real-world graph (the Hyperlink Web
graph with over 3.5 billion vertices and 128 billion edges) can fit in the
memory of a single commodity multicore server. Nevertheless, most experimental
work in the literature report results on much smaller graphs, and the ones for
the Hyperlink graph use distributed or external memory. Therefore, it is
natural to ask whether we can efficiently solve a broad class of graph problems
on this graph in memory.
This paper shows that theoretically-efficient parallel graph algorithms can
scale to the largest publicly-available graphs using a single machine with a
terabyte of RAM, processing them in minutes. We give implementations of
theoretically-efficient parallel algorithms for 20 important graph problems. We
also present the optimizations and techniques that we used in our
implementations, which were crucial in enabling us to process these large
graphs quickly. We show that the running times of our implementations
outperform existing state-of-the-art implementations on the largest real-world
graphs. For many of the problems that we consider, this is the first time they
have been solved on graphs at this scale. We have made the implementations
developed in this work publicly-available as the Graph-Based Benchmark Suite
(GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 201
A_4 Symmetry and Lepton Masses and Mixing
Stimulated by Ma's idea which explains the tribimaximal neutrino mixing by
assuming an A_4 flavor symmetry, a lepton mass matrix model is investigated. A
Frogatt-Nielsen type model is assumed, and the flavor structures of the masses
and mixing are caused by the VEVs of SU(2)_L-singlet scalars \phi_i^u and
\phi_i^d (i=1,2,3), which are assigned to {\bf 3} and ({\bf 1}, {\bf 1}',{\bf
1}'') of A_4, respectively.Comment: 13 pages including 1 table, errors in Sec.7 correcte
Sudomotor and cardiovascular dysfunction in patients with early untreated Parkinson's disease.
BACKGROUND: According to Braak staging of Parkinson's disease (PD), detection of autonomic dysfunction would help with early diagnosis of PD. OBJECTIVE: To determine whether the autonomic nervous system is involved in the early stage of PD, we evaluated cardiovascular and sudomotor function in early untreated PD patients. METHODS: Orthostatic blood pressure regulation, heart rate variability, skin vasomotor function, and palmar sympathetic sweat responses were examined in 50 early untreated PD patients and 20 healthy control subjects. RESULTS: The mean decrease in systolic blood pressure during head-up tilt in PD patients was mildly but significantly larger than in controls (p = 0.0001). There were no differences between the 2 groups in heart rate variability, with analysis of low frequency (LF; mediated by baroreflex feedback), and high frequency (HF; mainly reflecting parasympathetic vagal) modulation. However, LF/HF, an index of sympatho-parasympathetic balance, was lower in the PD group than in controls (p = 0.02). Amplitudes of palmar sweat responses to deep inspiration (p = 0.004), mental arithmetic (p = 0.01), and exercise (p = 0.01) in PD patients were lower than in controls, with negative correlations with motor severity. Amplitudes of palmar skin vasomotor reflexes in PD patients did not differ from controls. CONCLUSIONS: Our study indicates impairment of sympathetic cardiovascular and sudomotor function with orthostatic dysregulation of blood pressure control, reduced LF/HF and reduction in palm sweat responses even in early untreated PD patients
Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud
Large-scale star formation in disk galaxies is hypothesized to be driven by
global gravitational instability. The observed gas surface density is commonly
used to compute the strength of gravitational instability, but according to
this criterion star formation often appears to occur in gravitationally stable
regions. One possible reason is that the stellar contribution to the
instability has been neglected. We have examined the gravitational instability
of the Large Magellanic Cloud (LMC) considering the gas alone, and considering
the combination of collisional gas and collisionless stars. We compare the
gravitationally unstable regions with the on-going star formation revealed by
Spitzer observations of young stellar objects. Although only 62% of the massive
young stellar object candidates are in regions where the gas alone is unstable,
some 85% lie in regions unstable due to the combination of gas and stars. The
combined stability analysis better describes where star formation occurs. In
agreement with other observations and numerical models, a small fraction of the
star formation occurs in regions with gravitational stability parameter Q > 1.
We further measure the dependence of the star formation timescale on the
strength of gravitational instability, and quantitatively compare it to the
exponential dependence expected from numerical simulations.Comment: Accepted for publication in ApJ, 10 pages, 5 figure
Local scour and flow characteristics around a circular cylinder undergoing vortex-induced vibration
Vortex-induced vibration (VIV) has been extensively studied and the related findings presented in published literature. However, when the cylinder is placed near an erodible sand bed, interactions between the vibrating cylinder, flow field and local scour evidently will become very complex. The aim of this study is to provide an improved understanding of the interaction between the flow field, free vibrating cylinder and scour by using flow visualization and a new PIV measurement technique. The results show that the amplitude and frequency of the vibrating cylinder are closely related to the depth of the scour hole. Based on the qualitative observation and quantitative measurement of the flow field, vibrating cylinder and scour dimensions, three distinct scour stages are identified in this study. The characteristics of the turbulence intensity, formation and transmission of the vortices in each of these three scour stages are discussed in this paper
- …