14,990 research outputs found

    The Influence of Metallicity on Star Formation in Protogalaxies

    Full text link
    In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.Comment: 3 pages, 2 figures, First Stars III conference proceeding

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence

    Full text link
    (Modified) The scaling of velocity fluctuation, dv, as a function of spatial scale L in molecular clouds can be measured from size-linewidth relations, principal component analysis, or line centroid variation. Differing values of the power law index of the scaling relation dv = L^(g3D) in 3D are given by these different methods: the first two give g3D=0.5, while line centroid analysis gives g3D=0. This discrepancy has previously not been fully appreciated, as the variation of projected velocity line centroid fluctuations (dv_{lc} = L^(g2D)) is indeed described, in 2D, by g2D=0.5. However, if projection smoothing is accounted for, this implies that g3D=0. We suggest that a resolution of this discrepancy can be achieved by accounting for the effect of density inhomogeneity on the observed g2D obtained from velocity line centroid analysis. Numerical simulations of compressible turbulence are used to show that the effect of density inhomogeneity statistically reverses the effect of projection smoothing in the case of driven turbulence so that velocity line centroid analysis does indeed predict that g2D=g3D=0.5. Using our numerical results we can restore consistency between line centroid analysis, principal component analysis and size-linewidth relations, and we derive g3D=0.5, corresponding to shock-dominated (Burgers) turbulence. We find that this consistency requires that molecular clouds are continually driven on large scales or are only recently formed.Comment: 28 pages total, 20 figures, accepted for publication in Ap

    Formation of Globular Clusters in Galaxy Mergers

    Full text link
    We present a high-resolution simulation of globular cluster formation in a galaxy merger. For the first time in such a simulation, individual star clusters are directly identified and followed on their orbits. We quantitatively compare star formation in the merger to that in the unperturbed galaxies. The merging galaxies show a strong starburst, in sharp contrast to their isolated progenitors. Most star clusters form in the tidal features. With a mass range of 5×1055\times10^{5}--5×106M5\times 10^{6} M_{\odot}, they are identified as globular clusters. The merger remnant is an elliptical galaxy. Clusters with different mass or age have different radial distributions in the galaxy. Our results show that the high specific frequency and bimodal distribution of metallicity observed in elliptical galaxies are natural products of gas-rich mergers, supporting a merger origin for the ellipticals and their globular cluster systems.Comment: ApJL accepted, version with high quality color images can be found in http://research.amnh.org/~yuexing/astro-ph/0407248.pd

    Temperature Fluctuations driven by Magnetorotational Instability in Protoplanetary Disks

    Full text link
    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.Comment: 16 pages, 13 figures, ApJ In Press, updated to match proof

    Solenoidal versus compressive turbulence forcing

    Full text link
    We analyze the statistics and star formation rate obtained in high-resolution numerical experiments of forced supersonic turbulence, and compare with observations. We concentrate on a systematic comparison of solenoidal (divergence-free) and compressive (curl-free) forcing, which are two limiting cases of turbulence driving. Our results show that for the same RMS Mach number, compressive forcing produces a three times larger standard deviation of the density probability distribution. When self-gravity is included in the models, the star formation rate is more than one order of magnitude higher for compressive forcing than for solenoidal forcing.Comment: 1 page, to appear in the proceedings of the IAU General Assembly Joint Discussion 14 "FIR2009: The ISM of Galaxies in the Far-Infrared and Sub-Millimetre", ed. M. Cunningha

    The Inability of Ambipolar Diffusion to set a Characteristic Mass Scale in Molecular Clouds

    Full text link
    We investigate the question of whether ambipolar diffusion (ion-neutral drift) determines the smallest length and mass scale on which structure forms in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly neutral, uniformly driven, turbulent medium, using a three-dimensional, two-fluid, magnetohydrodynamics (MHD) code modified from Zeus-MP. We find that substantial structure persists below the ambipolar diffusion scale because of the propagation of compressive slow MHD waves at smaller scales. Contrary to simple scaling arguments, ambipolar diffusion thus does not suppress structure below its characteristic dissipation scale as would be expected for a classical diffusive process. We have found this to be true for the magnetic energy, velocity, and density. Correspondingly, ambipolar diffusion leaves the clump mass spectrum unchanged. Ambipolar diffusion appears unable to set a characteristic scale for gravitational collapse and star formation in turbulent molecular clouds.Comment: 16 pages, 5 figures. ApJ accepte

    The speed of gravity in general relativity

    Full text link
    The question is discussed of what is the speed of gravity (at the fundamental non-perturbative level). The question is important, if nowhere else, in discussing the problem of information "lost" in black holes. It turns out that the duly defined "gravitational signal" generally may be causal, superluminal and "semi-superluminal". In the class of globally hyperbolic spacetimes the two last varieties coincide. And if some (often imposed, but not always satisfied) conditions hold, the signals may be \emph{only} causal. In this sense the speed of gravity does not exceed the speed of light.Comment: typos corrected, et
    corecore