14,552 research outputs found

    The speed of gravity in general relativity

    Full text link
    The question is discussed of what is the speed of gravity (at the fundamental non-perturbative level). The question is important, if nowhere else, in discussing the problem of information "lost" in black holes. It turns out that the duly defined "gravitational signal" generally may be causal, superluminal and "semi-superluminal". In the class of globally hyperbolic spacetimes the two last varieties coincide. And if some (often imposed, but not always satisfied) conditions hold, the signals may be \emph{only} causal. In this sense the speed of gravity does not exceed the speed of light.Comment: typos corrected, et

    The Influence of Metallicity on Star Formation in Protogalaxies

    Full text link
    In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.Comment: 3 pages, 2 figures, First Stars III conference proceeding

    World-line Quantisation of a Reciprocally Invariant System

    Get PDF
    We present the world-line quantisation of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase space coordinates" (xμ(τ),pμ(τ))(x^\mu(\tau),p^\mu(\tau)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate dependent transformations of an additional compact phase coordinate, θ(τ)\theta(\tau)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrisations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D1,1)U(D1,1)H(D)Q(D-1,1)\cong U(D-1,1)\ltimes H(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated to the phase variable θ(τ)\theta(\tau)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical spectrum, leaving over spin zero states only, the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well

    Temperature Fluctuations driven by Magnetorotational Instability in Protoplanetary Disks

    Full text link
    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.Comment: 16 pages, 13 figures, ApJ In Press, updated to match proof

    Ballistic-Ohmic quantum Hall plateau transition in graphene pn junction

    Get PDF
    Recent quantum Hall experiments conducted on disordered graphene pn junction provide evidence that the junction resistance could be described by a simple Ohmic sum of the n and p mediums' resistances. However in the ballistic limit, theory predicts the existence of chirality-dependent quantum Hall plateaus in a pn junction. We show that two distinctively separate processes are required for this ballistic-Ohmic plateau transition, namely (i) hole/electron Landau states equilibration and (ii) valley iso-spin dilution of the incident Landau edge state. These conclusions are obtained by a simple scattering theory argument, and confirmed numerically by performing ensembles of quantum magneto-transport calculations on a 0.1um-wide disordered graphene pn junction within the tight-binding model. The former process is achieved by pn interface roughness, where a pn interface disorder with a root-mean-square roughness of 10nm was found to suffice under typical experimental conditions. The latter process is mediated by extrinsic edge roughness for an armchair edge ribbon and by intrinsic localized intervalley scattering centers at the edge of the pn interface for a zigzag ribbon. In light of these results, we also examine why higher Ohmic type plateaus are less likely to be observable in experiments.Comment: 9 pages, 6 figure

    Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence

    Full text link
    (Modified) The scaling of velocity fluctuation, dv, as a function of spatial scale L in molecular clouds can be measured from size-linewidth relations, principal component analysis, or line centroid variation. Differing values of the power law index of the scaling relation dv = L^(g3D) in 3D are given by these different methods: the first two give g3D=0.5, while line centroid analysis gives g3D=0. This discrepancy has previously not been fully appreciated, as the variation of projected velocity line centroid fluctuations (dv_{lc} = L^(g2D)) is indeed described, in 2D, by g2D=0.5. However, if projection smoothing is accounted for, this implies that g3D=0. We suggest that a resolution of this discrepancy can be achieved by accounting for the effect of density inhomogeneity on the observed g2D obtained from velocity line centroid analysis. Numerical simulations of compressible turbulence are used to show that the effect of density inhomogeneity statistically reverses the effect of projection smoothing in the case of driven turbulence so that velocity line centroid analysis does indeed predict that g2D=g3D=0.5. Using our numerical results we can restore consistency between line centroid analysis, principal component analysis and size-linewidth relations, and we derive g3D=0.5, corresponding to shock-dominated (Burgers) turbulence. We find that this consistency requires that molecular clouds are continually driven on large scales or are only recently formed.Comment: 28 pages total, 20 figures, accepted for publication in Ap
    corecore