187 research outputs found

    Coherent photon bremsstrahlung and dynamics of heavy-ion collisions: comparison of different models

    Get PDF
    Differential spectra of coherent photon bremsstrahlung in relativistic heavy ion collisions are calculated within various schematic models of the projectile-target stopping. Two versions of the degradation length model, based on a phenomenological deceleration law, are considered. The simple shock wave model is studied analytically. The predictions of these models agree in the soft photon limit, where the spectrum is determined only by the final velocity distribution of charged particles. The results of these models in the case of central Au+Au collisions at various bombarding energies are compared with the predictions of the microscopic transport model UrQMD. It is shown that at the AGS energy the coherent photon bremsstrahlung exceeds the photon yield from π0\pi^0-decays at photon energies \omega\loo 50 MeV.Comment: 23 pages RevTeX, 9 eps Figure

    Gravitation with superposed Gauss--Bonnet terms in higher dimensions: Black hole metrics and maximal extensions

    Get PDF
    Our starting point is an iterative construction suited to combinatorics in arbitarary dimensions d, of totally anisymmetrised p-Riemann 2p-forms (2p\le d) generalising the (1-)Riemann curvature 2-forms. Superposition of p-Ricci scalars obtained from the p-Riemann forms defines the maximally Gauss--Bonnet extended gravitational Lagrangian. Metrics, spherically symmetric in the (d-1) space dimensions are constructed for the general case. The problem is directly reduced to solving polynomial equations. For some black hole type metrics the horizons are obtained by solving polynomial equations. Corresponding Kruskal type maximal extensions are obtained explicitly in complete generality, as is also the periodicity of time for Euclidean signature. We show how to include a cosmological constant and a point charge. Possible further developments and applications are indicated.Comment: 13 pages, REVTEX. References and Note Adde

    Generalised Israel Junction Conditions for a Gauss-Bonnet Brane World

    Get PDF
    In spacetimes of dimension greater than four it is natural to consider higher order (in R) corrections to the Einstein equations. In this letter generalized Israel junction conditions for a membrane in such a theory are derived. This is achieved by generalising the Gibbons-Hawking boundary term. The junction conditions are applied to simple brane world models, and are compared to the many contradictory results in the literature.Comment: 4 page

    3D MHD Flux Emergence Experiments: Idealized models and coronal interactions

    Full text link
    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealized, in the sense that the internal energy equation only involves the adiabatic, Ohmic and viscous shock heating terms. However, provided the main aim is to investigate the dynamical evolution, this is adequate. Many interesting observational phenomena are explained by these models in a self-consistent manner.Comment: Review article, accepted for publication in Solar Physic

    On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions

    Full text link
    In this paper we study thick-shell braneworld models in the presence of a Gauss-Bonnet term. We discuss the peculiarities of the attainment of the thin-shell limit in this case and compare them with the same situation in Einstein gravity. We describe the two simplest families of thick-brane models (parametrized by the shell thickness) one can think of. In the thin-shell limit, one family is characterized by the constancy of its internal density profile (a simple structure for the matter sector) and the other by the constancy of its internal curvature scalar (a simple structure for the geometric sector). We find that these two families are actually equivalent in Einstein gravity and that the presence of the Gauss-Bonnet term breaks this equivalence. In the second case, a shell will always keep some non-trivial internal structure, either on the matter or on the geometric sectors, even in the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for publication in Physical Review

    Brane cosmology with curvature corrections

    Get PDF
    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflaton field or negative pressures. At late times, conventional cosmology is recovered.Comment: RevTex4, 8 pages, no figures, minor change

    The fuzzy S^2 structure of M2-M5 systems in ABJM membrane theories

    Get PDF
    We analyse the fluctuations of the ground-state/funnel solutions proposed to describe M2-M5 systems in the level-k mass-deformed/pure Chern-Simons-matter ABJM theory of multiple membranes. We show that in the large N limit the fluctuations approach the space of functions on the 2-sphere rather than the naively expected 3-sphere. This is a novel realisation of the fuzzy 2-sphere in the context of Matrix Theories, which uses bifundamental instead of adjoint scalars. Starting from the multiple M2-brane action, a U(1) Yang-Mills theory on R^{2,1} x S^2 is recovered at large N, which is consistent with a single D4-brane interpretation in Type IIA string theory. This is as expected at large k, where the semiclassical analysis is valid. Several aspects of the fluctuation analysis, the ground-state/funnel solutions and the mass-deformed/pure ABJM equations can be understood in terms of a discrete noncommutative realisation of the Hopf fibration. We discuss the implications for the possibility of finding an M2-brane worldvolume derivation of the classical S^3 geometry of the M2-M5 system. Using a rewriting of the equations of the SO(4)-covariant fuzzy 3-sphere construction, we also directly compare this fuzzy 3-sphere against the ABJM ground-state/funnel solutions and show them to be different.Comment: 60 pages, Latex; v2: references added; v3: typos corrected and references adde

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel
    corecore