10,643 research outputs found
An investigation of the plastic fracture of high strength steels
Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation
Sintering of titanium with yttrium oxide additions for the scavenging of chlorine impurities
Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by YO appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks
Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance
In this letter we present a real space density functional theory (DFT)
localized basis set semi-empirical pseudopotential (SEP) approach. The method
is applied to iron and magnesium oxide, where bulk SEP and local spin density
approximation (LSDA) band structure calculations are shown to agree within
approximately 0.1 eV. Subsequently we investigate the qualitative
transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find
that the SEP method is particularly well suited to address the tight binding
transferability problem because the transferability error at the interface can
be characterized not only in orbital space (via the interface local density of
states) but also in real space (via the system potential). To achieve a
quantitative parameterization, we introduce the notion of ghost semi-empirical
pseudopotentials extracted from the first-principles calculated Fe/MgO bonding
interface. Such interface corrections are shown to be particularly necessary
for barrier widths in the range of 1 nm, where interface states on opposite
sides of the barrier couple effectively and play a important role in the
transmission characteristics. In general the results underscore the need for
separate tight binding interface and bulk parameter sets when modeling
conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic
Loss of star forming gas in SDSS galaxies
Using the star formation rates from the SDSS galaxy sample, extracted using
the MOPED algorithm, and the empirical Kennicutt law relating star formation
rate to gas density, we calculate the time evolution of the gas fraction as a
function of the present stellar mass. We show how the gas-to-stars ratio varies
with stellar mass, finding good agreement with previous results for smaller
samples at the present epoch. For the first time we show clear evidence for
progressive gas loss with cosmic epoch, especially in low-mass systems. We find
that galaxies with small stellar masses have lost almost all of their cold
baryons over time, whereas the most massive galaxies have lost little. Our
results also show that the most massive galaxies have evolved faster and turned
most of their gas into stars at an early time, thus strongly supporting a
downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte
Corrections to deuterium hyperfine structure due to deuteron excitations
We consider the corrections to deuterium hyperfine structure originating from
the two-photon exchange between electron and deuteron, with the deuteron
excitations in the intermediate states. In particular, the motion of the two
intermediate nucleons as a whole is taken into account. The problem is solved
in the zero-range approximation. The result is in good agreement with the
experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models
We use 3D numerical MHD simulations to follow the evolution of cold,
turbulent, gaseous systems with parameters representing GMC conditions. We
study three cloud simulations with varying mean magnetic fields, but identical
initial velocity fields. We show that turbulent energy is reduced by a factor
two after 0.4-0.8 flow crossing times (2-4 Myr), and that the magnetically
supercritical cloud models collapse after ~6 Myr, while the subcritical cloud
does not collapse. We compare density, velocity, and magnetic field structure
in three sets of snapshots with matched Mach numbers. The volume and column
densities are both log-normally distributed, with mean volume density a factor
3-6 times the unperturbed value, but mean column density only a factor 1.1-1.4
times the unperturbed value. We use a binning algorithm to investigate the
dependence of kinetic quantities on spatial scale for regions of column density
contrast (ROCs). The average velocity dispersion for the ROCs is only weakly
correlated with scale, similar to the mean size-linewidth relation for clumps
within GMCs. ROCs are often superpositions of spatially unconnected regions
that cannot easily be separated using velocity information; the same difficulty
may affect observed GMC clumps. We analyze magnetic field structure, and show
that in the high density regime, total magnetic field strengths increase with
density with logarithmic slope 1/3 -2/3. Mean line-of-sight magnetic field
strengths vary widely across a projected cloud, and do not correlate with
column density. We compute simulated interstellar polarization maps at varying
orientations, and determine that the Chandrasekhar-Fermi formula multiplied by
a factor ~0.5 yields a good estimate of the plane-of sky magnetic field
strength provided the dispersion in polarization angles is < 25 degrees.Comment: 56 pages, 25 figures; Ap.J., accepte
Formation of Primordial Protostars
The evolution of collapsing metal free protostellar clouds is investigated
for various masses and initial conditions.
We perform hydrodynamical calculations for spherically symmetric clouds
taking account of radiative transfer of the molecular hydrogen lines and the
continuum, as well as of chemistry of the molecular hydrogen.
The collapse is found to proceed almost self-similarly like Larson-Penston
similarity solution.
In the course of the collapse, efficient three-body processes transform
atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular
form.
However, hydrogen in the outer part remains totally atomic although there is
an intervening transitional layer of several solar masses, where hydrogen is in
partially molecular form.
No opaque transient core is formed although clouds become optically thick to
H collision-induced absorption continuum, since H dissociation
follows successively.
When the central part of the cloud reaches stellar densities (), a very small hydrostatic core (\sim
5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the
ambient gas accretes onto it.
The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun}
{\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where is instantaneous
mass of the central core, by using a similarity solution which reproduces the
evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
Commuting Position and Momentum Operators, Exact Decoherence and Emergent Classicality
Inspired by an old idea of von Neumann, we seek a pair of commuting operators
X,P which are, in a specific sense, "close" to the canonical non-commuting
position and momentum operators, x,p. The construction of such operators is
related to the problem of finding complete sets of orthonormal phase space
localized states, a problem severely constrained by the Balian-Low theorem.
Here these constraints are avoided by restricting attention to situations in
which the density matrix is reasonably decohered (i.e., spread out in phase
space). Commuting position and momentum operators are argued to be of use in
discussions of emergent classicality from quantum mechanics. In particular,
they may be used to give a discussion of the relationship between exact and
approximate decoherence in the decoherent histories approach to quantum theory.Comment: 28 pages, RevTe
- …