1,873 research outputs found

    Effective String Theory and Nonlinear Lorentz Invariance

    Full text link
    We study the low-energy effective action governing the transverse fluctuations of a long string, such as a confining flux tube in QCD. We work in the static gauge where this action contains only the transverse excitations of the string. The static gauge action is strongly constrained by the requirement that the Lorentz symmetry, that is spontaneously broken by the long string vacuum, is nonlinearly realized on the Nambu-Goldstone bosons. One solution to the constraints (at the classical level) is the Nambu-Goto action, and the general solution contains higher derivative corrections to this. We show that in 2+1 dimensions, the first allowed correction to the Nambu-Goto action is proportional to the squared curvature of the induced metric on the worldsheet. In higher dimensions, there is a more complicated allowed correction that appears at lower order than the curvature squared. We argue that this leading correction is similar to, but not identical to, the one-loop determinant (\sqrt{-h} R \Box^{-1} R) computed by Polyakov for the bosonic fundamental string.Comment: 15 page

    Effective String Theory Revisited

    Full text link
    We revisit the effective field theory of long relativistic strings such as confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by a calculation in static gauge. This interaction implies that a non-critical string which initially oscillates in one direction gets excited in orthogonal directions as well. In static gauge no additional term in the effective action is needed to obtain this effect. It results from a one-loop calculation using the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at all stages in dimensional regularization. We also explain that independent of the number of dimensions non-covariant counterterms have to be added to the action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published versio

    Worldvolume Superalgebra Of BLG Theory With Nambu-Poisson Structure

    Full text link
    Recently it was proposed that the Bagger-Lambert-Gustavsson theory with Nambu-Poisson structure describes an M5-brane in a three-form flux background. In this paper we investigate the superalgebra associated with this theory. We derive the central charges corresponding to M5-brane solitons in 3-form backgrounds. We also show that double dimensional reduction of the superalgebra gives rise to the Poisson bracket terms of a non-commutative D4-brane superalgebra. We provide interpretations of the D4-brane charges in terms of spacetime intersections.Comment: 23 pages; references added, section 4 clarification

    Second language user support

    Get PDF
    Computer users rarely experience entirely trouble-free interaction. The natural variety ofindividuals ensures that no software systems yield constantly fluent interaction for allusers. In consequence, software designers often strive to ameliorate this situation bybuilding 'user support' into their systems. User support can take different forms but,conventionally, each aims to assist the needy end-user by means of facilities directly supporting the performance of certain operations, or through supply of information thatadvises the user on available system functionality.The present paper briefly characterises a range of user support facilities before describingone requirement in greater detail. This aspect considers the needs of users whose mother-tongue is not English, but who are obliged to use English-based information systems. Inthis context, 'helping the user' must reasonably extend beyond mere advice on systemoperation to selective elucidation of information content. We regard this move as alogical extension of the user support concept, by seeking to address specific interactionneeds in a target user population. An example of this approach is described through aninformation system, in the domain of civil engineering, for native Chinese speakers ofEnglish

    BPS States on M5-brane in Large C-field Background

    Full text link
    We extensively study BPS solutions of the low energy effective theory of M5-brane in large C-field background. This provides us an opportunity to explore the interactions turned on by C-field background through the Nambu-Poisson structure. The BPS states considered in this paper include the M-waves, the self-dual string (M2 ending on M5), tilted M5-brane, holomorphic embedding of M5-brane and the intersection of two M5-branes along a 3-brane.Comment: 25 pages, reference adde

    On Non-linear Action for Gauged M2-brane

    Full text link
    We propose a non-linear extension of U(1) \times U(1) (abelian) ABJM model including T_{M2} (higher derivative) corrections. The action proposed here is expected to describe a single M2-brane proving C^4/Z_k target space. The model includes couplings with the 3-form background in the eleven-dimensional supergravity which is consistent with the orbifold projection. We show that the novel higgs mechanism proposed by Mukhi and Papageorgakis does work even in the presence of higher derivative corrections and couplings with the background field, giving the correct structure of the Dirac-Born-Infeld action with Wess-Zumino term for a D2-brane. We also find half BPS solutions in the full non-linear theory which is interpreted as an another M2-brane intersecting with the original M2-brane. A possible generalization to U(N) \times U(N) gauge group is briefly discussed.Comment: 19 pages, no figure, references added, typos correcte

    Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage.</p> <p>Methods</p> <p>Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno<sub>[coreceptor]</sub>.</p> <p>Results</p> <p>Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno<sub>[coreceptor] </sub>(10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate.</p> <p>Conclusions</p> <p>The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.</p

    Activated Magnetospheres of Magnetars

    Full text link
    Like the solar corona, the external magnetic field of magnetars is twisted by surface motions of the star. The twist energy is dissipated over time. We discuss the theory of this activity and its observational status. (1) Theory predicts that the magnetosphere tends to untwist in a peculiar way: a bundle of electric currents (the "j-bundle") is formed with a sharp boundary, which shrinks toward the magnetic dipole axis. Recent observations of shrinking hot spots on magnetars are consistent with this behavior. (2) Continual discharge fills the j-bundle with electron-positron plasma, maintaining a nonthermal corona around the neutron star. The corona outside a few stellar radii strongly interacts with the stellar radiation and forms a "radiatively locked" outflow with a high e+- multiplicity. The locked plasma annihilates near the apexes of the closed magnetic field lines. (3) New radiative-transfer simulations suggest a simple mechanism that shapes the observed X-ray spectrum from 0.1 keV to 1 MeV: part of the thermal X-rays emitted by the neutron star are reflected from the outer corona and then upscattered by the inner relativistic outflow in the j-bundle, producing a beam of hard X-rays.Comment: 23 pages, 7 figures; review chapter in the proceedings of ICREA Workshop on the High-Energy Emission from Pulsars and Their Systems, Sant Cugat, Spain, April 201

    Telepresence and the Role of the Senses

    Get PDF
    The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses

    Boundary Conditions for Interacting Membranes

    Get PDF
    We investigate supersymmetric boundary conditions in both the Bagger-Lambert and the ABJM theories of interacting membranes. We find boundary conditions associated to the fivebrane, the ninebrane and the M-theory wave. For the ABJM theory we are able to understand the enhancement of supersymmetry to produce the (4,4) supersymmetry of the self-dual string. We also include supersymmetric boundary conditions on the gauge fields that cancel the classical gauge anomaly of the Chern-Simons terms.Comment: 36 pages, latex, v2 minor typos correcte
    corecore