8 research outputs found
Improving the care of children with GENetic Rare disease: Observational Cohort study (GenROC)—a study protocol
Introduction: Around 2000 children are born in the UK per year with a neurodevelopmental genetic syndrome with significantly increased morbidity and mortality. Often little is known about expected growth and phenotypes in these children. Parents have responded by setting up social media groups to generate data themselves. Given the significant clinical evidence gaps, this research will attempt to identify growth patterns, developmental profiles and phenotypes, providing data on long-term medical and educational outcomes. This will guide clinicians when to investigate, monitor or treat symptoms and when to search for additional or alternative diagnoses. Methods and analysis: This is an observational, multicentre cohort study recruiting between March 2023 and February 2026. Children aged 6 months up to 16 years with a pathogenic or likely pathogenic variant in a specified gene will be eligible. Children will be identified through the National Health Service and via self-recruitment. Parents or carers will complete a questionnaire at baseline and again 1 year after recruitment. The named clinician (in most cases a clinical geneticist) will complete a clinical proforma which will provide data from their most recent clinical assessment. Qualitative interviews will be undertaken with a subset of parents partway through the study. Growth and developmental milestone curves will be generated through the DECIPHER website (https://deciphergenomics.org) where 5 or more children have the same genetic syndrome (at least 10 groups expected). Ethics and dissemination: The results will be presented at national and international conferences concerning the care of children with genetic syndromes. Results will also be submitted for peer review and publication
Improving the care of children with GENetic Rare disease:Observational Cohort study (GenROC)-a study protocol
INTRODUCTION: Around 2000 children are born in the UK per year with a neurodevelopmental genetic syndrome with significantly increased morbidity and mortality. Often little is known about expected growth and phenotypes in these children. Parents have responded by setting up social media groups to generate data themselves. Given the significant clinical evidence gaps, this research will attempt to identify growth patterns, developmental profiles and phenotypes, providing data on long-term medical and educational outcomes. This will guide clinicians when to investigate, monitor or treat symptoms and when to search for additional or alternative diagnoses.METHODS AND ANALYSIS: This is an observational, multicentre cohort study recruiting between March 2023 and February 2026. Children aged 6 months up to 16 years with a pathogenic or likely pathogenic variant in a specified gene will be eligible. Children will be identified through the National Health Service and via self-recruitment. Parents or carers will complete a questionnaire at baseline and again 1 year after recruitment. The named clinician (in most cases a clinical geneticist) will complete a clinical proforma which will provide data from their most recent clinical assessment. Qualitative interviews will be undertaken with a subset of parents partway through the study. Growth and developmental milestone curves will be generated through the DECIPHER website (https://deciphergenomics.org) where 5 or more children have the same genetic syndrome (at least 10 groups expected).ETHICS AND DISSEMINATION: The results will be presented at national and international conferences concerning the care of children with genetic syndromes. Results will also be submitted for peer review and publication.</p
Recommended from our members
Improving the care of children with GENetic Rare disease: Observational Cohort study (GenROC)-a study protocol.
Peer reviewed: TrueINTRODUCTION: Around 2000 children are born in the UK per year with a neurodevelopmental genetic syndrome with significantly increased morbidity and mortality. Often little is known about expected growth and phenotypes in these children. Parents have responded by setting up social media groups to generate data themselves. Given the significant clinical evidence gaps, this research will attempt to identify growth patterns, developmental profiles and phenotypes, providing data on long-term medical and educational outcomes. This will guide clinicians when to investigate, monitor or treat symptoms and when to search for additional or alternative diagnoses. METHODS AND ANALYSIS: This is an observational, multicentre cohort study recruiting between March 2023 and February 2026. Children aged 6 months up to 16 years with a pathogenic or likely pathogenic variant in a specified gene will be eligible. Children will be identified through the National Health Service and via self-recruitment. Parents or carers will complete a questionnaire at baseline and again 1 year after recruitment. The named clinician (in most cases a clinical geneticist) will complete a clinical proforma which will provide data from their most recent clinical assessment. Qualitative interviews will be undertaken with a subset of parents partway through the study. Growth and developmental milestone curves will be generated through the DECIPHER website (https://deciphergenomics.org) where 5 or more children have the same genetic syndrome (at least 10 groups expected). ETHICS AND DISSEMINATION: The results will be presented at national and international conferences concerning the care of children with genetic syndromes. Results will also be submitted for peer review and publication
Natural history of adults with KBG syndrome:AÂ physician-reported experience
PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS.METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data.RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets.CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.</p
Management of coronary disease in patients with advanced kidney disease
BACKGROUND Clinical trials that have assessed the effect of revascularization in patients with stable coronary disease have routinely excluded those with advanced chronic kidney disease. METHODS We randomly assigned 777 patients with advanced kidney disease and moderate or severe ischemia on stress testing to be treated with an initial invasive strategy consisting of coronary angiography and revascularization (if appropriate) added to medical therapy or an initial conservative strategy consisting of medical therapy alone and angiography reserved for those in whom medical therapy had failed. The primary outcome was a composite of death or nonfatal myocardial infarction. A key secondary outcome was a composite of death, nonfatal myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. RESULTS At a median follow-up of 2.2 years, a primary outcome event had occurred in 123 patients in the invasive-strategy group and in 129 patients in the conservative-strategy group (estimated 3-year event rate, 36.4% vs. 36.7%; adjusted hazard ratio, 1.01; 95% confidence interval [CI], 0.79 to 1.29; P=0.95). Results for the key secondary outcome were similar (38.5% vs. 39.7%; hazard ratio, 1.01; 95% CI, 0.79 to 1.29). The invasive strategy was associated with a higher incidence of stroke than the conservative strategy (hazard ratio, 3.76; 95% CI, 1.52 to 9.32; P=0.004) and with a higher incidence of death or initiation of dialysis (hazard ratio, 1.48; 95% CI, 1.04 to 2.11; P=0.03). CONCLUSIONS Among patients with stable coronary disease, advanced chronic kidney disease, and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of death or nonfatal myocardial infarction
Health status after invasive or conservative care in coronary and advanced kidney disease
BACKGROUND In the ISCHEMIA-CKD trial, the primary analysis showed no significant difference in the risk of death or myocardial infarction with initial angiography and revascularization plus guideline-based medical therapy (invasive strategy) as compared with guideline-based medical therapy alone (conservative strategy) in participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease (an estimated glomerular filtration rate of <30 ml per minute per 1.73 m2 or receipt of dialysis). A secondary objective of the trial was to assess angina-related health status. METHODS We assessed health status with the Seattle Angina Questionnaire (SAQ) before randomization and at 1.5, 3, and 6 months and every 6 months thereafter. The primary outcome of this analysis was the SAQ Summary score (ranging from 0 to 100, with higher scores indicating less frequent angina and better function and quality of life). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate the treatment effect with the invasive strategy. RESULTS Health status was assessed in 705 of 777 participants. Nearly half the participants (49%) had had no angina during the month before randomization. At 3 months, the estimated mean difference between the invasive-strategy group and the conservative-strategy group in the SAQ Summary score was 2.1 points (95% credible interval, 120.4 to 4.6), a result that favored the invasive strategy. The mean difference in score at 3 months was largest among participants with daily or weekly angina at baseline (10.1 points; 95% credible interval, 0.0 to 19.9), smaller among those with monthly angina at baseline (2.2 points; 95% credible interval, 122.0 to 6.2), and nearly absent among those without angina at baseline (0.6 points; 95% credible interval, 121.9 to 3.3). By 6 months, the between-group difference in the overall trial population was attenuated (0.5 points; 95% credible interval, 122.2 to 3.4). CONCLUSIONS Participants with stable ischemic heart disease, moderate or severe ischemia, and advanced chronic kidney disease did not have substantial or sustained benefits with regard to angina-related health status with an initially invasive strategy as compared with a conservative strategy
Health-status outcomes with invasive or conservative care in coronary disease
BACKGROUND In the ISCHEMIA trial, an invasive strategy with angiographic assessment and revascularization did not reduce clinical events among patients with stable ischemic heart disease and moderate or severe ischemia. A secondary objective of the trial was to assess angina-related health status among these patients. METHODS We assessed angina-related symptoms, function, and quality of life with the Seattle Angina Questionnaire (SAQ) at randomization, at months 1.5, 3, and 6, and every 6 months thereafter in participants who had been randomly assigned to an invasive treatment strategy (2295 participants) or a conservative strategy (2322). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate differences between the treatment groups. The primary outcome of this health-status analysis was the SAQ summary score (scores range from 0 to 100, with higher scores indicating better health status). All analyses were performed in the overall population and according to baseline angina frequency. RESULTS At baseline, 35% of patients reported having no angina in the previous month. SAQ summary scores increased in both treatment groups, with increases at 3, 12, and 36 months that were 4.1 points (95% credible interval, 3.2 to 5.0), 4.2 points (95% credible interval, 3.3 to 5.1), and 2.9 points (95% credible interval, 2.2 to 3.7) higher with the invasive strategy than with the conservative strategy. Differences were larger among participants who had more frequent angina at baseline (8.5 vs. 0.1 points at 3 months and 5.3 vs. 1.2 points at 36 months among participants with daily or weekly angina as compared with no angina). CONCLUSIONS In the overall trial population with moderate or severe ischemia, which included 35% of participants without angina at baseline, patients randomly assigned to the invasive strategy had greater improvement in angina-related health status than those assigned to the conservative strategy. The modest mean differences favoring the invasive strategy in the overall group reflected minimal differences among asymptomatic patients and larger differences among patients who had had angina at baseline
Initial invasive or conservative strategy for stable coronary disease
BACKGROUND Among patients with stable coronary disease and moderate or severe ischemia, whether clinical outcomes are better in those who receive an invasive intervention plus medical therapy than in those who receive medical therapy alone is uncertain. METHODS We randomly assigned 5179 patients with moderate or severe ischemia to an initial invasive strategy (angiography and revascularization when feasible) and medical therapy or to an initial conservative strategy of medical therapy alone and angiography if medical therapy failed. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. A key secondary outcome was death from cardiovascular causes or myocardial infarction. RESULTS Over a median of 3.2 years, 318 primary outcome events occurred in the invasive-strategy group and 352 occurred in the conservative-strategy group. At 6 months, the cumulative event rate was 5.3% in the invasive-strategy group and 3.4% in the conservative-strategy group (difference, 1.9 percentage points; 95% confidence interval [CI], 0.8 to 3.0); at 5 years, the cumulative event rate was 16.4% and 18.2%, respectively (difference, 121.8 percentage points; 95% CI, 124.7 to 1.0). Results were similar with respect to the key secondary outcome. The incidence of the primary outcome was sensitive to the definition of myocardial infarction; a secondary analysis yielded more procedural myocardial infarctions of uncertain clinical importance. There were 145 deaths in the invasive-strategy group and 144 deaths in the conservative-strategy group (hazard ratio, 1.05; 95% CI, 0.83 to 1.32). CONCLUSIONS Among patients with stable coronary disease and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of ischemic cardiovascular events or death from any cause over a median of 3.2 years. The trial findings were sensitive to the definition of myocardial infarction that was used