455 research outputs found

    Patient-derived organoids and high grade serous ovarian cancer: from disease modeling to personalized medicine

    Get PDF
    Background: High grade serous ovarian cancer (HGSOC) is among the deadliest human cancers and its prognosis remains extremely poor. Tumor heterogeneity and rapid acquisition of resistance to conventional chemotherapeutic approaches strongly contribute to poor outcome of patients. The clinical landscape of HGSOC has been radically transformed since the advent of targeted therapies in the last decade. Nevertheless, the lack of predictive biomarkers informing on the differential clinical benefit in select subgroups, and allowing patient-centric approaches, currently limits the efficacy of these novel therapies. Thus, rational selection of the best possible treatment for each patient represents a clinical priority in order to improve outcome, while limiting undesirable effects. Main body: In this review, we describe the state of the art and the unmet needs in HGSOC management, illustrate the treatment options that are available and the biomarkers that are currently employed to orient clinical decisions. We also describe the ongoing clinical trials that are testing new therapeutic approaches for HGSOC. Next, we introduce the organoid technology as a promising, expanding strategy to study cancer and to develop personalized therapeutic approaches. In particular, we discuss recent studies that have characterized the translational potential of Patient's Derived Organoids (PDOs) to inform on drug sensitivity of HGSOC patients. Conclusions: PDOs can predict the response of patients to treatments and may therefore guide therapeutic decisions. Although preliminary results appear encouraging, organoids still need to be generated and expanded efficiently to enable drug screening in a clinically meaningful time window. A new generation of clinical trials based on the organoid technology should guarantee tailored approaches to ovarian cancer management, as it is now clear that the one-size-fits-all approach cannot lead to efficient and meaningful therapeutic advancements

    Dual inhibition of CDK12 and CDK13 uncovers actionable vulnerabilities in patient-derived ovarian cancer organoids

    Get PDF
    Background: High grade serous ovarian cancer (HGSOC) is highly lethal, partly due to chemotherapy resistance and limited availability of targeted approaches. Cyclin dependent kinases 12 and 13 (CDK12/13) are promising therapeutic targets in human cancers, including HGSOC. Nevertheless, the effects of their inhibition in HGSOC and the potential synergy with other drugs are poorly known. Methods: We analyzed the effects of the CDK12/13 inhibitor THZ531 in HGSOC cells and patient-derived organoids (PDOs). RNA sequencing and quantitative PCR analyses were performed to identify the genome-wide effects of short-term CDK12/13 inhibition on the transcriptome of HGSOC cells. Viability assays with HGSOC cells and PDOs were performed to assess the efficacy of THZ531 as single agent or in combination with clinically relevant drugs. Results: The CDK12 and CDK13 genes are deregulated in HGSOC and their concomitant up-regulation with the oncogene MYC predicts poor prognosis. HGSOC cells and PDOs display high sensitivity to CDK12/13 inhibition, which synergizes with drugs in clinical use for HGSOC. Transcriptome analyses revealed cancer-relevant genes whose expression is repressed by dual CDK12/13 inhibition through impaired splicing. Combined treatment with THZ531 and inhibitors of pathways regulated by these cancer relevant genes (EGFR, RPTOR, ATRIP) exerted synergic effects on HGSOC PDO viability. Conclusions: CDK12 and CDK13 represent valuable therapeutic targets for HGSOC. We uncovered a wide spectrum of CDK12/13 targets as potential therapeutic vulnerabilities for HGSOC. Moreover, our study indicates that CDK12/13 inhibition enhances the efficacy of approved drugs that are already in use for HGSOC or other human cancers

    Epigenetic Matters: The Link between Early Nutrition, Microbiome, And Long-term Health Development

    Get PDF
    Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short-and long-term effects

    Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women with polycystic ovary syndrome (PCOS) are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD), which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR) gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a) mice, possessing a mutation (Ay) in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction.</p> <p>Methods</p> <p>Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4) or an equal volume of vehicle (DMSO; n = 4) for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression.</p> <p>Results</p> <p>Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM), and actin-related protein 6 homolog (ARP6). For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a) non-mutant lean mice.</p> <p>Conclusion</p> <p>TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.</p

    WHO systematic review of maternal morbidity and mortality: the prevalence of severe acute maternal morbidity (near miss)

    Get PDF
    AIM: To determine the prevalence of severe acute maternal morbidity (SAMM) worldwide (near miss). METHOD: Systematic review of all available data. The methodology followed a pre-defined protocol, an extensive search strategy of 10 electronic databases as well as other sources. Articles were evaluated according to specified inclusion criteria. Data were extracted using data extraction instrument which collects additional information on the quality of reporting including definitions and identification of cases. Data were entered into a specially constructed database and tabulated using SAS statistical management and analysis software. RESULTS: A total of 30 studies are included in the systematic review. Designs are mainly cross-sectional and 24 were conducted in hospital settings, mostly teaching hospitals. Fourteen studies report on a defined SAMM condition while the remainder use a response to an event such as admission to intensive care unit as a proxy for SAMM. Criteria for identification of cases vary widely across studies. Prevalences vary between 0.80% – 8.23% in studies that use disease-specific criteria while the range is 0.38% – 1.09% in the group that use organ-system based criteria and included unselected group of women. Rates are within the range of 0.01% and 2.99% in studies using management-based criteria. It is not possible to pool data together to provide summary estimates or comparisons between different settings due to variations in case-identification criteria. Nevertheless, there seems to be an inverse trend in prevalence with development status of a country. CONCLUSION: There is a clear need to set uniform criteria to classify patients as SAMM. This standardisation could be made for similar settings separately. An organ-system dysfunction/failure approach is the most epidemiologically sound as it is least open to bias, and thus could permit developing summary estimates

    Insulin/IGF and Sex Hormone Axes in Human Endometrium and Associations with Endometrial Cancer Risk Factors

    Get PDF
    Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point-object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2012 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore