1,821 research outputs found

    On the static Lovelock black holes

    Full text link
    We consider static spherically symmetric Lovelock black holes and generalize the dimensionally continued black holes in such a way that they asymptotically for large r go over to the d-dimensional Schwarzschild black hole in dS/AdS spacetime. This means that the master algebraic polynomial is not degenerate but instead its derivative is degenerate. This family of solutions contains an interesting class of pure Lovelock black holes which are the Nth order Lovelock {\Lambda}-vacuum solu- tions having the remarkable property that their thermodynamical parameters have the universal character in terms of the event horizon radius. This is in fact a characterizing property of pure Lovelock theories. We also demonstrate the universality of the asymptotic Einstein limit for the Lovelock black holes in general.Comment: 19 page

    The Lanczos potential for Weyl-candidate tensors exists only in four dimensions

    Get PDF
    We prove that a Lanczos potential L_abc for the Weyl candidate tensor W_abcd does not generally exist for dimensions higher than four. The technique is simply to assume the existence of such a potential in dimension n, and then check the integrability conditions for the assumed system of differential equations; if the integrability conditions yield another non-trivial differential system for L_abc and W_abcd, then this system's integrability conditions should be checked; and so on. When we find a non-trivial condition involving only W_abcd and its derivatives, then clearly Weyl candidate tensors failing to satisfy that condition cannot be written in terms of a Lanczos potential L_abc.Comment: 11 pages, LaTeX, Heavily revised April 200

    Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem

    Full text link
    The Euclidean black hole has topology 2×Sd2\Re^2 \times {\cal S}^{d-2}. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in 2\Re^2 and the area of the Sd2{\cal S}^{d-2} are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the Sd2{\cal S}^{d-2} there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.Comment: 7 pages, RevTe

    Algebraic Rainich theory and antisymmetrisation in higher dimensions

    Full text link
    The classical Rainich(-Misner-Wheeler) theory gives necessary and sufficient conditions on an energy-momentum tensor TT to be that of a Maxwell field (a 2-form) in four dimensions. Via Einstein's equations these conditions can be expressed in terms of the Ricci tensor, thus providing conditions on a spacetime geometry for it to be an Einstein-Maxwell spacetime. One of the conditions is that T2T^2 is proportional to the metric, and it has previously been shown in arbitrary dimension that any tensor satisfying this condition is a superenergy tensor of a simple pp-form. Here we examine algebraic Rainich conditions for general pp-forms in higher dimensions and their relations to identities by antisymmetrisation. Using antisymmetrisation techniques we find new identities for superenergy tensors of these general (non-simple) forms, and we also prove in some cases the converse; that the identities are sufficient to determine the form. As an example we obtain the complete generalisation of the classical Rainich theory to five dimensions.Comment: 16 pages, LaTe

    Conserved Matter Superenergy Currents for Hypersurface Orthogonal Killing Vectors

    Full text link
    We show that for hypersurface orthogonal Killing vectors, the corresponding Chevreton superenergy currents will be conserved and proportional to the Killing vectors. This holds for four-dimensional Einstein-Maxwell spacetimes with an electromagnetic field that is sourcefree and inherits the symmetry of the spacetime. A similar result also holds for the trace of the Chevreton tensor. The corresponding Bel currents have previously been proven to be conserved and our result can be seen as giving further support to the concept of conserved mixed superenergy currents. The analogous case for a scalar field has also previously been proven to give conserved currents and we show, for completeness, that these currents also are proportional to the Killing vectors.Comment: 13 page

    A Characterization of the Einstein Tensor in Terms of Spinors

    Get PDF
    All tensors of contravariant rank two which are divergence‐free on one index, concomitants of a spinor field σiAX′ together with its first two partial derivatives, and scalars under spin transformations are constructed. The Einstein and metric tensors are the only candidates

    Null cone preserving maps, causal tensors and algebraic Rainich theory

    Get PDF
    A rank-n tensor on a Lorentzian manifold V whose contraction with n arbitrary causal future directed vectors is non-negative is said to have the dominant property. These tensors, up to sign, are called causal tensors, and we determine their general properties in dimension N. We prove that rank-2 tensors which map the null cone on itself are causal. It is known that, to any tensor A on V there is a corresponding ``superenergy'' (s-e) tensor T{A} which always has the dominant property. We prove that, conversely, any symmetric rank-2 tensor with the dominant property can be written in a canonical way as a sum of N s-e tensors of simple forms. We show that the square of any rank-2 s-e tensor is proportional to the metric if N<5, and that this holds for the s-e tensor of any simple form for arbitrary N. Conversely, we prove that any symmetric rank-2 tensor T whose square is proportional to the metric must be, up to sign, the s-e of a simple p-form, and that the trace of T determines the rank p of the form. This generalises, both with respect to N and the rank p, the classical algebraic Rainich conditions, which are necessary and sufficient conditions for a metric to originate in some physical field, and has a geometric interpretation: the set of s-e tensors of simple forms is precisely the set of tensors which preserve the null cone and its time orientation. It also means that all involutory Lorentz transformations (LT) can be represented as s-e tensors of simple forms, and that any rank-2 s-e tensor is the sum of at most N conformally involutory LT. Non-symmetric null cone preserving maps are shown to have a causal symmetric part and are classified according to the null eigenvectors of the skew-symmetric part. We thus obtain a complete classification of all conformal LT and singular null cone preserving maps on V.Comment: 36 pages, no figures, LaTeX fil

    Structure of Lanczos-Lovelock Lagrangians in Critical Dimensions

    Full text link
    The Lanczos-Lovelock models of gravity constitute the most general theories of gravity in D dimensions which satisfy (a) the principle of of equivalence, (b) the principle of general co-variance, and (c) have field equations involving derivatives of the metric tensor only up to second order. The mth order Lanczos-Lovelock Lagrangian is a polynomial of degree m in the curvature tensor. The field equations resulting from it become trivial in the critical dimension D=2mD = 2m and the action itself can be written as the integral of an exterior derivative of an expression involving the vierbeins, in the differential form language. While these results are well known, there is some controversy in the literature as to whether the Lanczos-Lovelock Lagrangian itself can be expressed as a total divergence of quantities built only from the metric and its derivatives (without using the vierbeins) in D=2mD = 2m. We settle this issue by showing that this is indeed possible and provide an algorithm for its construction. In particular, we demonstrate that, in two dimensions, Rg=jRjR \sqrt{-g} = \partial_j R^j for a doublet of functions Rj=(R0,R1)R^j = (R^0,R^1) which depends only on the metric and its first derivatives. We explicitly construct families of such R^j -s in two dimensions. We also address related questions regarding the Gauss-Bonnet Lagrangian in D=4D = 4. Finally, we demonstrate the relation between the Chern-Simons form and the mth order Lanczos-Lovelock Lagrangian.Comment: 15 pages, no figure

    Conserved Matter Superenergy Currents for Orthogonally Transitive Abelian G2 Isometry Groups

    Full text link
    In a previous paper we showed that the electromagnetic superenergy tensor, the Chevreton tensor, gives rise to a conserved current when there is a hypersurface orthogonal Killing vector present. In addition, the current is proportional to the Killing vector. The aim of this paper is to extend this result to the case when we have a two-parameter Abelian isometry group that acts orthogonally transitive on non-null surfaces. It is shown that for four-dimensional Einstein-Maxwell theory with a source-free electromagnetic field, the corresponding superenergy currents lie in the orbits of the group and are conserved. A similar result is also shown to hold for the trace of the Chevreton tensor and for the Bach tensor, and also in Einstein-Klein-Gordon theory for the superenergy of the scalar field. This links up well with the fact that the Bel tensor has these properties and the possibility of constructing conserved mixed currents between the gravitational field and the matter fields.Comment: 15 page

    Higher dimensional gravity invariant under the Poincare group

    Full text link
    It is shown that the Stelle-West Grignani-Nardelli-formalism allows, both when odd dimensions and when even dimensions are considered, constructing actions for higher dimensional gravity invariant under local Lorentz rotations and under local Poincar\`{e} translations. It is also proved that such actions have the same coefficients as those obtained by Troncoso and Zanelli in ref. Class. Quantum Grav. 17 (2000) 4451.Comment: 7 pages, Latex, accepted in Phys. Rev.
    corecore