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All tensors of contravariant rank two which are divergence-free on one index, concomitants of a spinor 
field (Tux together with its first two partial derivatives, and scalars under spin transformations are 
constructed. The Einstein and metric tensors are the only candidates. 

1. INTRODUCTION 

It is usually assumed that the field equations govern
ing the interaction of the gravitational field with any 
other field (the latter having associated with it an 
energy-momentum tensor Tii) are of the form 

(1. 1) 

where A/j are the components of a type (2,0) tensor 
which is constructed only from those field variables 
characterizing the gravitational field. Furthermore, 
it is customary to demand that the choice of Ali be re
stricted by the identity 

AiJ,j=O, (1.2) 

in order that, as a consequence of (1. 1), we have 

TIJIj = O. 

Typically, if it is assumed that 

(i) the gravitational field is characterized by a sym
metric metric tensor gab' and 

(ii) the quantities Ali are constructed from gab and its 
first two partial derivatives, i. e. , 

then it is known that, 1 in a four-dimensional space, 
(1. 2) and (1. 3) imply that 

Ail =aGiJ + bgii , 

(1. 3) 

(1.4) 

where a, b are constants, and Gli is the Einstein tensor. 
In this case (1.4) and (1. 1) give rise to the usual 
Einstein field equations, where Tli now satisfy 

Tij=Tii. (1. 5) 

However, it has been claimed by some, 2,3 that TiJ 
should be nonsymmetric, in which case, as has been 
pointed out by Ehlers, 4 in order to accommodate this 
possibility, the assumptions (i) and (iil would have to 
be changed. The purpose of this note is to discuss the 
consequence of adopting one possible alternative to (i) 
and (ii). 

It is known that the gravitational field can be charac
terized in terms of a spinor field ajAX' or a tetrad field 

h (a=I, ... ,4), these two characterizations being 
(",)1 
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equivalent by virtue of the relations 

the a",AX' being the conventional Pauli spin matrices. 
These quantities are related to the metric by 

gjl = ajAX,aJBy,EABEX'Y' = ajAX,aJAX' (1.6) 

Guided by these observations, and (1. 3), we shall 
therefore seek all tensors Ali satisfying (1. 2) and for 
which 

(1. 7) 

where Aji are also assumed to be invariant under arbi
trary (unimodular) spin transformations. 

This problem is equivalent to finding all tensors Ali 
satisfying (1. 2) and 

A lJ = A ji ( h ; h ; h ) , 
(""a (a"a.b (""a,bc 

(1. 8) 

where Ai} are scalars under arbitrary proper Lorentz 
transformations. Skew-symmetric tensors satisfying 
(1. 2) and (1. 8) are known;5 however they are not scalars 
under arbitrary proper Lorentz transformations. 

It is clear from (1.6) that every spin-tensor which 
is a concomitant of gjj and its partial derivatives is 
always a concomitant of ajAX' and its partial derivatives. 
If the converse to this were valid, then the above prob
lem, viz. (1.2) and (1. 7) would immediately reduce to 
(1.2) and (1.3), and so, without further calculation (1.4) 
would follow. Unfortunately a proof of the converse does 
not seem to exist in the literature. 

The spinor notation which we adopt here is essentially 
that of Pirani. 6 From (1.6) it can be shown that the 
following is an identity (Schmutzer 7

): 

r:;aA Y' ab BY' creBX' = t(g"bacA X ' + gbC(j'AX' 

_ g"caMx' + iE"bcaa/x'). 

If we define S"bA B and S"b x' Y'by 

sabA B = (j' AX' abBX' - ab AX' (j'BXI , 

then repeated application of (1.9) gives rise to 
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(1. 9) 

(1.10) 

(1. 11) 

1001 

Downloaded 27 Sep 2011 to 129.123.125.223. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



(1.12) 

,2. CHARACTERIZATION OF Ars 

Because the Ali are assumed to satisfy (1. 7) and to 
be the components of a type (2,0) tensor under arbitrary 
coordinate transformations, certain invariance identi
tiess must be satisfied, one of which is 

Ars;.AX· .be + Ars;cAX' .ab + Ars;bAX' ,00 = 0, (2.1) 

where Ars;aAX',be== ilArs! a aaAX' ,be is a spin-tensor sym
metric in be. 

The invariance of Ali under spinor transformations 
also gives rise to invariance identities,8 two of which 
are 

(2.2) 

and 

(2.3) 

If we define the spin-tensor ATs;.b.ed by 

(2.4) 

then (2. 1) gives rise to 

(2.5) 

If we multiply (2. 2) by S·b A B, (2. 3) by SOb X' Y' and add 
the resulting equations we find, by virtue of (1.12), 

(2.6) 

From (2.5) and (2.6) it is easily seen that 

(2.7) 

Up to the present, no use has been made of (1. 2), 
which in view of (1.7) can be expressed in the form 

(2.8) 

Differentiation of (2. 8) with respect to aaAx' ,cds thus 
yields 

ATs;aAX' ,cd + Ard; aAX' ,se + ATe;aAX' ,ds = 0, 

which, by (2.4), is equivalent to 

(2.9) 

If we define ATs;ab,ed;1j .~, by 

(2.10) 

and note (2.4), we see that 

(2.11) 

Elsewhere! it has been shown that, in a four-dimen
sional space, if Ars;.b.ed;!J ,k' is any quantity which has 
the properties (2.5), (2.6), (2.7), (2.9), and (2.11) then 

(2.12) 

[An alternative proof of (2.12), which readily suggests 
generalizations to higher dimensional spaces, is 
presented in the Appendix. ] 

A comparison of (2.12) and (2.10) establishes that 
A/i'ab,ed is independent of alllY',kl' which, in turn, im
plies that A/Nab,cd is also independent of a lBy• ,k' 9 i. e. , 
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(2.13) 

Where g'abed is a spin-tensor with the same symmetry 
properties as Ns;ab,ed, viz. (2.5), (2.6), (2.7), and 
(2.9). 

From (2.4) and (2.13) we thus find 

which, upon integration, yields 

(2.14) 

From (1. 6) we see that 

AX' + AX' + 0 ( ) 
g'b,ed = a.AX• ,edab aa °bAx' ,cd .bed °IAX' ;oux·.J . 

When this is taken together with (2.14), it gives rise to 

which can be reexpressed10 in the form 

Ars = tgsabedRoobd + gS(oaAX' ;aaAX' .b) 

where gs is now a spin-tensor, which is therefore 
independent of aaAx' .b' i. e. , 

(2.15) 

All spin-tensors gs:= gS(aaAx') have been constructed9 

the result being 

gs = bffs, (2.16) 

where b is a real constant. 

Consequently, the problem of determining ATS has re
duced to the evaluation of the spin-tensor gsabcd where 
Esabed = ESabcd( alA X') and where Esabcd satisfies (2. 5), 
(2.6), (2.7), and (2.9). To do this we proceed somewhat 
indirectly, as follows. 

It is easily seen that, because of the symmetry prop
erties of Eoabed, 

gt.lei BSbd _ 2(Fsabed + FOOde. + EdaSeb) to - , 

from which we obtain 

g taleJ BSbd + g tbicJ Bsad + Eta/d} o'be + g tbldJ osae - 12gsabed 
tli IlJ tl} tl} - • 

If we define 

(fa I c= - b,EtI}lgtalei, 

and recall that 

B~~1:= - ESbdlEtlJ I' 

we see that (2. 17) reads 

(2.17) 

(2.18) 

gs.bed == Esbdl {fa, e + E'aal {fbi e + ES bel {fa I d + Esael {3"b, d • (2. 19) 

Consequently a knowledge of ~a,c determines gsabed. 

From (2.18) we note that 

and 

{3"a,e= - j3'ela 

{3"'11 =0. 

We now define 
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(2.21) 

(2.22) 
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{3ABCDX' y, Z, W' = O'rAX' O'aBY' O'cCZ' al DW,fJ"a Ie, (2.23) 

in which case (2. 21) and (2. 22) imply 

f3ABCDX'Y'Z'W' = -f3ACBDX'Z'Y'W" (2.24) 

and 

(2.25) 

respectively. From arguments similar to those 
presented in Lemma A3 of Ref. 9, we find by virtue of 
(2.24) and (2.25) 

f3ABCDX'Y'Z'W' =ic[EBc€AD(Ex'Y'Ez'w' + Ex'z'€y'w') 

-EY'Z,Ex'w·(EABECD +EACEBD )], 

where C is a real constant. The latter is substituted in 
(2.23) which is then solved for fJ"a1c, (1.9) being used 
repeatedly in the process, this giving rise to 

(2.26) 

where a is a real constant. Equations (2.16), (2.19), 
and (2.26) are now substituted in (2.15) to yield 

Ars = aG"s + bg"s. 

We thus have the following theorem. 

Theorem: If ATs=Ars(O'aAX':O'aAX',b:O'aAX',bc) is a spin

tensor and 

then 

ATS = aG"S + bg"s 

where a, b are constants. 

Consequently, we see that, even in this case, the 
symmetry of NS [and hence of rrs by (1.1)] is again an 
inevitable consequence. 

APPENDIX 

The purpose of this appendix is to outline an alterna
tive derivation of Eq. (2.12) which explicitly exhibits 
the role played by the dimensionality of the space. We 
begin by introducing quantities !lab and f31J which are both 
assumed to be symmetric in their indices but are other
wise arbitrary, and consider the expression 

Arll;ai ,cI 3;!l4,hi sos b d j h tv '" '" (.) 
2 11121314i5"b-cal-'ljl-'hk' 
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By expanding the Kronecker delta and by repeatedly 
invoking the symmetries of Ars;ab.cdHJ,hk, viz. (2.5), 
(2.6), (2.7), and (2.9), as well as the symmetries in
duced by the expression (lab!lcd f3 IJ!3"k a lengthy, but 
nevertheless straightforward calculation, shows that 

= t[4Ars;ab,cd;lJ,hk +ATs;ab,iJ;cd,lk] !lab!lcaf3/Jf3hk' (AI) 

This equation holds irrespective of the dimension of 
the underlying space. However, for n=4, the left-hand 
side of (Al) vanishes identically in which case it is 
easily seen, on account of the arbitrary nature of the 
!lab and f3 IJ , that 

By successively interchanging the pairs (cd), (ij), and 
(hk) in (A2), it thus follows that 

as required. 
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