6,716 research outputs found
Low cost tracking Navaids error model verification
Features and characteristics of the tracking navaids (Microwave Scanning Beam Landing System, Radar Altimeter, Tacan, rendezvous radar and one way Doppler extracter) were investigated. From the investigation, a set of specifications were developed for building equipment to verify the error model of the tracking navaids. Breadboard verification equipment (BVE) was built for the Microwave Scanning Beam Landing System and the radar altimeter. The breadboard verification equipment generates signals to the tracking navaids which simulate the space shuttles trajectory in the terminal area. The BVE simulates sources of navaids error by generating pseudorandom perturbations on the navaids signals. Differences between the trajectory value and the navaid derived values are taped and form the basis for the navaids error model
New H_(2)O masers in Seyfert and FIR bright galaxies: III. The southern sample
Context. A relationship between the water maser detection rate and far infrared (FIR) flux densities was established as a result of two 22 GHz maser surveys in a complete sample of galaxies (Dec > −30°) with flux densities of >50 Jy and >30 Jy.
Aims. We attempted to discover new maser sources and investigate the galaxies hosting the maser spots by extending previous surveys to southern galaxies with particular emphasis on the study of their nuclear regions.
Methods. A sample of 12 galaxies with Dec 50 Jy was observed with the 70-m telescope of the Canberra deep space communication complex (CDSCC) at Tidbinbilla (Australia) in a search for water maser emission. The average 3σ noise level of the survey was 15 mJy for a 0.42 km s^(−1) channel, corresponding to a detection threshold of ∼0.1 L_☉ for the isotropic maser luminosity at a distance of 25 Mpc.
Results. Two new detections are reported: a kilomaser with an isotropic luminosity L_(H_(2)O) ~ 5 L_☉ in NGC 3620 and a maser with about twice this luminosity in the merger system NGC 3256. The detections have been followed-up by continuum and spectral line interferometric observations with the Australia Telescope Compact Array (ATCA). In NGC 3256, a fraction (about a third) of the maser emission originates in two hot spots associated with star formation activity, which are offset from the galactic nuclei of the system. The remaining emission may originate in weaker centres of maser activity distributed over the central 50". For NGC 3620, the water maser is coincident with the nuclear region of the galaxy. Our continuum observations indicate that the nature of the nuclear emission is probably linked to particularly intense star formation. Including the historical detection in NGC 4945, the water maser detection rate in the southern sample is 15% (3/20), consistent with the northern sample. The high rate of maser detections in the complete all-sky FIR sample (23%, 15/65) confirms the existence of a link between overall FIR flux density and maser phenomena. A relation between H_(2)O and OH masers in the FIR sample is also discussed
Two neutron decay of 16Be
Recently, the first example of two-neutron decay from the ground state of an
unbound nucleus, Be, was seen. Three-body methods are ideal for exactly
treating the degrees of freedom important for these decays. Using a basis
expansion over hyperspherical harmonics and the hyperspherical R-matrix method,
we construct a realistic model of Be in order to investigate its decay
mode and the role of the two-neutron interaction. The neutron-Be
interaction is constrained using shell model predictions. We obtain a ground
state for Be that is over-bound by approximately 1 MeV with a width of
approximately 0.23 MeV. This suggests, that for such systems, the three-body
force needs to be repulsive.Comment: 4 pages, 1 figure, contribution to the proceedings for the 21st
International Conference on Few Body Problems in Physics, Chicago, Illinois,
US
Energy dependence of non-local potentials
Recently a variety of studies have shown the importance of including
non-locality in the description of reactions. The goal of this work is to
revisit the phenomenological approach to determining non-local optical
potentials from elastic scattering. We perform a analysis of neutron
elastic scattering data off Ca, Zr and Pb at energies MeV, assuming a Perey and Buck or Tian, Pang, and Ma non-local
form for the optical potential. We introduce energy and asymmetry dependencies
in the imaginary part of the potential and refit the data to obtain a global
parameterization. Independently of the starting point in the minimization
procedure, an energy dependence in the imaginary depth is required for a good
description of the data across the included energy range. We present two
parameterizations, both of which represent an improvement over the original
potentials for the fitted nuclei as well as for other nuclei not included in
our fit. Our results show that, even when including the standard Gaussian
non-locality in optical potentials, a significant energy dependence is required
to describe elastic-scattering data.Comment: 6 pages, 3 figures, accepted by Phys. Rev. C Rapid Communicatio
A study of high-altitude manned research aircraft employing strut-braced wings of high-aspect-ratio
The effect of increased wing aspect ratio of subsonic aircraft on configurations with and without strut bracing. Results indicate that an optimum cantilever configuration, with a wing aspect ratio of approximately 26, has a 19% improvement in cruise range when compared to a baseline concept with a wing aspect ratio of approximately 10. An optimum strut braced configuration, with a wing aspect ratio of approximately 28, has a 31% improvment in cruise range when compared to the same baseline concept. This improvement is mainly due to the estimated reduction in wing weight resulting from use of lifting struts. All configurations assume the same mission payload and fuel. The drag characteristics of the wings are enhanced with the use of laminar flow airfoils. A method for determining the extent of attainable natural laminar flow, and methods for preliminary structural design and for aerodynamic analysis of wings lifting struts are presented
Space VLBI Observations of 3C 279 at 1.6 and 5 GHz
We present the first VLBI Space Observatory Programme (VSOP) observations of
the gamma-ray blazar 3C 279 at 1.6 and 5 GHz. The combination of the VSOP and
VLBA-only images at these two frequencies maps the jet structure on scales from
1 to 100 mas. On small angular scales the structure is dominated by the quasar
core and the bright secondary component `C4' located 3 milliarcseconds from the
core (at this epoch). On larger angular scales the structure is dominated by a
jet extending to the southwest, which at the largest scale seen in these images
connects with the smallest scale structure seen in VLA images. We have
exploited two of the main strengths of VSOP: the ability to obtain
matched-resolution images to ground-based images at higher frequencies and the
ability to measure high brightness temperatures. A spectral index map was made
by combining the VSOP 1.6 GHz image with a matched-resolution VLBA-only image
at 5 GHz from our VSOP observation on the following day. The spectral index map
shows the core to have a highly inverted spectrum, with some areas having a
spectral index approaching the limiting value for synchrotron self-absorbed
radiation of 2.5. Gaussian model fits to the VSOP visibilities revealed high
brightness temperatures (>10^{12} K) that are difficult to measure with
ground-only arrays. An extensive error analysis was performed on the brightness
temperature measurements. Most components did not have measurable brightness
temperature upper limits, but lower limits were measured as high as 5x10^{12}
K. This lower limit is significantly above both the nominal inverse Compton and
equipartition brightness temperature limits. The derived Doppler factor,
Lorentz factor, and angle to the line-of-sight in the case of the equipartition
limit are at the upper end of the range of expected values for EGRET blazars.Comment: 11 pages, 6 figures, emulateapj.sty, To be published in The
Astrophysical Journal, v537, Jul 1, 200
Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood
Interstellar scintillation (ISS) has been established as the cause of the
random variations seen at centimetre wavelengths in many compact radio sources
on timescales of a day or less. Observations of ISS can be used to probe
structure both in the ionized insterstellar medium of the Galaxy, and in the
extragalactic sources themselves, down to microarcsecond scales. A few quasars
have been found to show large amplitude scintillations on unusually rapid,
intrahour timescales. This has been shown to be due to weak scattering in very
local Galactic ``screens'', within a few tens of parsec of the Sun. The short
variability timescales allow detailed study of the scintillation properties in
relatively short observing periods with compact interferometric arrays. The
three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and
PKS 1257-326, have been instrumental in establishing ISS as the principal cause
of intraday variability at centimetre wavelengths. Here we review the relevant
results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical
Transaction
One-nucleon transfer reactions and the optical potential
We provide a summary of new developments in the area of direct reaction
theory with a particular focus on one-nucleon transfer reactions. We provide a
status of the methods available for describing (d,p) reactions. We discuss the
effects of nonlocality in the optical potential in transfer reactions. The
results of a purely phenomenological potential and the optical potential
obtained from the dispersive optical model are compared; both point toward the
importance of including nonlocality in transfer reactions explicitly. Given the
large ambiguities associated with optical potentials, we discuss some new
developments toward the quantification of this uncertainty. We conclude with
some general comments and a brief account of new advances that are in the
pipeline.Comment: 7 pages, 5 figures, proceedings for the 14th International Conference
on Nuclear Reaction Mechanisms, Varenna, June 201
Water Vapour Effects in Mass Measurement
Water vapour inside the mass comparator enclosure is a critical parameter. In
fact, fluctuations of this parameter during mass weighing can lead to errors in
the determination of an unknown mass. To control that, a proposal method is
given and tested. Preliminary results of our observation of water vapour
sorption and desorption processes from walls and mass standard are reported
- …