788 research outputs found

    Kelvin-Helmholtz Instability of the Magnetopause of Disc-Accreting Stars

    Full text link
    This work investigates the short wavelength stability of the magnetopause between a rapidly-rotating, supersonic, dense accretion disc and a slowly-rotating low-density magnetosphere of a magnetized star. The magnetopause is a strong shear layer with rapid changes in the azimuthal velocity, the density, and the magnetic field over a short radial distance and thus the Kelvin-Helmholtz (KH) instability may be important. The plasma dynamics is treated using non-relativistic, compressible (isentropic) magnetohydrodynamics. It is necessary to include the displacement current in order that plasma wave velocities remain less than the speed of light. We focus mainly on the case of a star with an aligned dipole magnetic field so that the magnetic field is axial in the disc midplane and perpendicular to the disc flow velocity. However, we also give results for cases where the magnetic field is at an arbitrary angle to the flow velocity. For the aligned dipole case the magnetopause is most unstable for KH waves propagating in the azimuthal direction perpendicular to the magnetic field which tends to stabilize waves propagating parallel to it. The wave phase velocity is that of the disc matter. A quasi-linear theory of the saturation of the instability leads to a wavenumber (kk) power spectrum k1\propto k^{-1} of the density and temperature fluctuations of the magnetopause, and it gives the mass accretion and angular momentum inflow rates across the magnetopause. For self-consistent conditions this mass accretion rate will be equal to the disc accretion rate at large distances from the magnetopause.Comment: 8 pages, 7 figure

    Gamma-ray Flares and VLBI Outbursts of Blazars

    Full text link
    A model is developed for the time dependent electromagnetic - radio to gamma-ray - emission of active galactic nuclei, specifically, the blazars, based on the acceleration and creation of leptons at a propagating discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a discrete relativistic jet component as observed with very-long-baseline-interferometry (VLBI). Equations are derived for the number, momentum, and energy of particles in the front taking into account synchrotron, synchrotron-self-Compton (SSC), and inverse-Compton processes as well as photon-photon pair production. The apparent synchrotron, SSC, and inverse-Compton luminosities as functions of time are determined. Predictions of the model are compared with observations in the gamma, optical and radio bands. The delay between the high-energy gamma-ray flare and the onset of the radio is explained by self-absorption and/or free-free absorption by external plasma. Two types of gamma-ray flares are predicted depending on pair creation in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R. Lovelace by sending postal address to [email protected]

    Stellar Explosions by Magnetic Towers

    Full text link
    We propose a magnetic mechanism for the collimated explosion of a massive star relevant for GRBs, XRFs and asymmetric supernovae. We apply Lynden-Bell's magnetic tower scenario to the interior of a massive rotating star after the core has collapsed to form a black hole with an accretion disk or a millisecond magnetar acting as a central engine. We solve the force-free Grad-Shafranov equation to calculate the magnetic structure and growth of a tower embedded in a stellar environment. The pressure of the toroidal magnetic field, continuously generated by differential rotation of the central engine, drives a rapid expansion which becomes vertically collimated after lateral force balance with the surrounding gas pressure is reached. The collimation naturally occurs because hoop stress concentrates magnetic field toward the rotation axis and inhibits lateral expansion. This leads to the growth of a self-collimated magnetic tower. When embedded in a massive star, the supersonic expansion of the tower drives a strong bow shock behind which an over-pressured cocoon forms. The cocoon confines the tower by supplying collimating pressure and provides stabilization against disruption due to MHD instabilities. Because the tower consists of closed field lines starting and ending on the central engine, mixing of baryons from the cocoon into the tower is suppressed. The channel cleared by the growing tower is thus plausibly free of baryons and allows the escape of magnetic energy from the central engine through the star. While propagating down the stellar density gradient, the tower accelerates and becomes relativistic. During the expansion, fast collisionless reconnection becomes possible resulting in dissipation of magnetic energy which may be responsible for GRB prompt emission.Comment: 19 pages, 8 figures, accepted to ApJ, updated references and additional discussion adde

    On the Nature of Part Time Radio Pulsars

    Full text link
    The recent discovery of rotating radio transients and the quasi-periodicity of pulsar activity in the radio pulsar PSR B1931++24 has challenged the conventional theory of radio pulsar emission. Here we suggest that these phenomena could be due to the interaction between the neutron star magnetosphere and the surrounding debris disk. The pattern of pulsar emission depends on whether the disk can penetrate the light cylinder and efficiently quench the processes of particle production and acceleration inside the magnetospheric gap. A precessing disk may naturally account for the switch-on/off behavior in PSR B1931++24.Comment: 9 pages, accepted to ApJ

    One-Loop Superstring Cosmology and the Non-Singular Universe

    Get PDF
    We study the cosmological implications of the one-loop terms in the string expansion. In particular, we find non-singular solutions which interpolate between a contracting universe and an expanding universe, and show that these solutions provide a mechanism for removing the initial conditions problem peculiar to spatially closed FRW cosmologies. In addition, we perform numerical calculations to show that the non-singular cosmologies do not require a careful choice of initial conditions, and estimate the likely magnitude of higher order terms in the string expansion.Comment: 19 pages, 3 figures (postscript), Latex2e, discussion of curvature invariants added. To appear in Phys. Rev.

    Static dilaton solutions and singularities in six dimensional warped compactification with higher derivatives

    Get PDF
    Static solutions with a bulk dilaton are derived in the context of six dimensional warped compactification. In the string frame, exponentially decreasing warp factors are identified with critical points of the low energy β\beta-functions truncated at a given order in the string tension corrections. The stability of the critical points is discussed in the case of the first string tension correction. The singularity properties of the obtained solutions are analyzed and illustrative numerical examples are provided.Comment: 35 pages. Revised version. Accepted in Phys. Rev.

    Low energy effective string cosmology

    Full text link
    We give the general analytic solutions derived from the low energy string effective action for four dimensional Friedmann-Robertson-Walker models with dilaton and antisymmetric tensor field, considering both long and short wavelength modes of the HH-field. The presence of a homogeneous HH-field significantly modifies the evolution of the scale factor and dilaton. In particular it places a lower bound on the allowed value of the dilaton. The scale factor also has a lower bound but our solutions remain singular as they all contain regions where the spacetime curvature diverges signalling a breakdown in the validity of the effective action. We extend our results to the simplest Bianchi I metric in higher dimensions with only two scale factors. We again give the general analytic solutions for long and short wavelength modes for the HH field restricted to the three dimensional space, which produces an anisotropic expansion. In the case of HH field radiation (wavelengths within the Hubble length) we obtain the usual four dimensional radiation dominated FRW model as the unique late time attractor.Comment: 22 pages, LaTeX, SUSX-TH-94/37, SUSSEX-AST-94/6-2. (Some terminology and figure captions corrected, references added.

    On the rotational dynamics of magnetically threaded disks around neutron stars

    Get PDF
    We investigate the rotational dynamics of disk accretion around a strongly magnetized neutron star with an aligned dipole field. The magnetospheric field is assumed to thread the disk plasma both inside and outside the corotation radius. As a result of disk-star interaction, the magnetic torque on the disk affects the structure of accretion flow to yield the observed spin- up or spin- down rates for a source of given fastness, magnetic field strength, and mass accretion rate. Within the model we obtain a prescription for the dynamical viscosity of such magnetically modified solutions for a Keplerian disk. We then use this prescription to find a model solution for the rotation rate profile throughout the entire disk, including the non-Keplerian inner disk. We find that the non-Keplerian angular velocity transition region is not necessarily narrow for a source of given spin state. The boundary layer approximation, as in the standard magnetically threaded disk model, holds only in the case of dynamical viscosity decreasing all the way to the innermost edge of the disk. These results are applied to several observed disk-fed X-ray pulsars that have exhibited quasi-periodic oscillations (QPOs). The QPO frequencies provide a constraint on the fastness parameter and enable one to determine uniquely the width of the angular velocity transition zone for each source within model assumptions. We discuss the implications of these results on the value of the critical fastness parameter for a magnetized star in spin equilibrium. Applications of our model are also made with relevant parameters from recent numerical simulations of quasi-stationary disk - magnetized star interactions

    Magnetic Field Limitations on Advection Dominated Flows

    Get PDF
    Recent papers discussing advection dominated accretion flows (ADAF) as a solution for astrophysical accretion problems should be treated with some caution because of their uncertain physical basis. The suggestions underlying ADAF involve ignoring the magnetic field reconnection in heating of the plasma flow, assuming electron heating due only to binary Coulomb collisions with ions. Here, we analyze the physical processes in optically thin accretion flows at low accretion rates including the influence of an equipartition turbulent magnetic field. For these conditions there is continuous destruction of magnetic flux by reconnection. The reconnection is expected to significantly heat the electrons which can efficiently emit magnetobremstrahlung radiation. Because of this electron emission, the radiative efficiency of the ADAF is not small. We suggest that the small luminosities of nearby galactic black holes is due to outflows rather than ADAF accretion.Comment: 7 pages, 3 figures, Submitted to Ap

    On the Gauge/Gravity Correspondence and the Open/Closed String Duality

    Full text link
    In this article we review the conditions for the validity of the gauge/gravity correspondence in both supersymmetric and non-supersymmetric string models. We start by reminding what happens in type IIB theory on the orbifolds C^2/Z_2 and C^3/(Z_2 x Z_2), where this correspondence beautifully works. In these cases, by performing a complete stringy calculation of the interaction among D3 branes, it has been shown that the fact that this correspondence works is a consequence of the open/closed duality and of the absence of threshold corrections. Then we review the construction of type 0 theories with their orbifolds and orientifolds having spectra free from both open and closed string tachyons and for such models we study the validity of the gauge/gravity correspondence, concluding that this is not a peculiarity of supersymmetric theories, but it may work also for non-supersymmetric models. Also in these cases, when it works, it is again a consequence of the open/closed string duality and of vanishing threshold corrections.Comment: Invited review article for Int. J. Mod. Phys. A, 95 pages, 2 figures, 3 tables, LaTeX. References and acknowledgements adde
    corecore