1,079 research outputs found

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200

    Relativistic Poynting Jets from Accretion Disks

    Full text link
    A model is developed for relativistic Poynting jets from the inner region of a disk around a rotating black hole. The disk is initially threaded by a dipole-like magnetic field. The model is derived from the special relativistic equation for a force-free electromagnetic field. The ``head'' of the Poynting jet is found to propagate outward with a velocity which may be relativistic. The Lorentz factor of the head (Gamma) is found to be dependent on the magnetic field strength close to the black hole, B_0, the density of the external medium n_ext, and on the ratio R=r_0/r_g >1, where r_g is the gravitational radius of the black hole, and r_0 is the radius of the O-point of the initial dipole field threading the disk. For conditions pertinent to an active galactic nuclei, Gamma is approximately equal to 8 (10/R)^(1/3) (B_0/10^3 Gauss)^(1/3) (1/cm^3/n_ext)^(1/6). This model offers an explanation for the observed Lorentz factors which are of the order of 10 for the parsec-scale radio jets measured with very long baseline interferometry.Comment: 4 pages, 1 figur

    Counter-rotating Accretion Disks

    Get PDF
    We consider accretion disks consisting of counter-rotating gaseous components with an intervening shear layer. Configurations of this type may arise from the accretion of newly supplied counter-rotating gas onto an existing co-rotating gas disk. For simplicity we consider the case where the gas well above the disk midplane is rotating with angular rate +Ω+\Omega and that well below has the same properties but is rotating with rate Ω-\Omega. Using the Shakura-Sunyaev alpha turbulence model, we find self-similar solutions where a thin (relative to the full disk thickness) equatorial layer accretes very rapidly, essentially at free-fall speed. As a result the accretion speed is much larger than it would be for an alpha disk rotating in one direction. Counter-rotating accretion disks may be a transient stage in the formation of counter-rotating galaxies and in the accretion of matter onto compact objects.Comment: 7 pages, 3 figures, aas2pp4.sty, submitted to Ap

    Magneto-centrifugally driven winds: comparison of MHD simulations with theory

    Get PDF
    Stationary magnetohydrodynamic (MHD) outflows from a rotating, conducting Keplerian accretion disk threaded by B-field are investigated numerically by time-dependent, axisymmetric (2.5D) simulations using a Godunov-type code. A large class of stationary magneto-centrifugally driven winds are found where matter is accelerated from a thermal speed at the disk to much larger velocity, greater than the fast magnetosonic speed and larger than the escape speed. The flows are approximately spherical outflows with only small collimation within the simulation region. Numerical results are shown to coincide with the theoretical predictions of ideal, axisymmetric MHD to high accuracy. Investigation of the influence of outer boundary conditions, particularly that on the toroidal component of magnetic field shows that the commonly used ``free'' boundary condition leads to artificial magnetic forces which can act to give spurious collimation. New boundary conditions are proposed which do not generate artificial forces. Artificial results may also arise for cases where the Mach cones on the outer boundaries are partially directed into the simulation region.Comment: 19 pages, 18 figures, emulapj.sty is use

    "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    Full text link
    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function of the main parameters. The propeller mechanism may be responsible for the fast spinning-down of the classical T Tauri stars in the initial stages of their evolution, and for the spinning-down of accreting millisecond pulsars.Comment: 18 pages, 16 figures, ApJ (accepted), added references, corrected typos; see animation at http://astrosun2.astro.cornell.edu/us-rus/disk_prop.ht

    Two-Stream Instability of Counter-Rotating Galaxies

    Get PDF
    The present study of the two-stream instability in stellar disks with counter-rotating components of stars and/or gas is stimulated by recently discovered counter-rotating spiral and S0 galaxies. Strong linear two-stream instability of tightly-wrapped spiral waves is found for one and two-armed waves with the pattern angular speed of the unstable waves always intermediate between the angular speed of the co-rotating matter (+Ω+\Omega) and that of the counter-rotating matter (Ω-\Omega). The instability arises from the interaction of positive and negative energy modes in the co- and counter-rotating components. The unstable waves are in general convective - they move in radius and radial wavenumber space - with the result that amplification of the advected wave is more important than the local growth rate. For a galaxy of co-rotating stars and counter-rotating stars of mass-fraction ξ<12\xi_* < {1\over 2}, or of counter-rotating gas of mass-fraction ξg<12\xi_g < {1\over 2}, the largest amplification is usually for the one-armed leading waves (with respect to the co-rotating stars). For the case of both counter-rotating stars and gas, the largest amplifications are for ξ+ξg12\xi_*+\xi_g \approx {1\over 2}, also for one-armed leading waves. The two-armed trailing waves usually have smaller amplifications. The growth rates and amplifications all decrease as the velocity spreads of the stars and/or gas increase. It is suggested that the spiral waves can provide an effective viscosity for the gas causing its accretion.Comment: 14 pages, submitted to ApJ. One table and 17 figures can be obtained by sending address to R. Lovelace at [email protected]

    Three-dimensional Simulations of Accretion to Stars with Complex Magnetic Fields

    Full text link
    Disk accretion to rotating stars with complex magnetic fields is investigated using full three-dimensional magnetohydrodynamic (MHD) simulations. The studied magnetic configurations include superpositions of misaligned dipole and quadrupole fields and off-centre dipoles. The simulations show that when the quadrupole component is comparable to the dipole component, the magnetic field has a complex structure with three major magnetic poles on the surface of the star and three sets of loops of field lines connecting them. A significant amount of matter flows to the quadrupole "belt", forming a ring-like hot spot on the star. If the maximum strength of the magnetic field on the star is fixed, then we observe that the mass accretion rate, the torque on the star, and the area covered by hot spots are several times smaller in the quadrupole-dominant cases than in the pure dipole cases. The influence of the quadrupole component on the shape of the hot spots becomes noticeable when the ratio of the quadrupole and dipole field strengths Bq/Bd0.5B_q/B_d\gtrsim0.5, and becomes dominant when Bq/Bd1B_q/B_d\gtrsim1. In the case of an off-centre dipole field, most of the matter flows through a one-armed accretion stream, forming a large hot spot on the surface, with a second much smaller secondary spot. The light curves may have simple, sinusoidal shapes, thus mimicking stars with pure dipole fields. Or, they may be complex and unusual. In some cases the light curves may be indicators of a complex field, in particular if the inclination angle is known independently. We also note that in the case of complex fields, magnetospheric gaps are often not empty, and this may be important for the survival of close-in exosolar planets.Comment: 13 pages, 21 figures, accepted for publication in MNRA

    Spherical Bondi accretion onto a magnetic dipole

    Get PDF
    Quasi-spherical supersonic (Bondi-type) accretion to a star with a dipole magnetic field is investigated using resistive magnetohydrodynamic simulations. A systematic study is made of accretion to a non-rotating star, while sample results for a rotating star are also presented. A new stationary subsonic accretion flow is found with a steady rate of accretion to the magnetized star smaller than the Bondi accretion rate. Dependences of the accretion rate and the flow pattern on the magnetic momentum of the star and the magnetic diffusivity are presented. For slow star's rotation the accretion flow is similar to that in non-rotating case, but in the case of fast rotation the structure of the subsonic accretion flow is fundamentally different and includes a region of ``propeller'' outflow. The methods and results described here are of general interest and can be applied to systems where matter accretes with low angular momentum.Comment: 15 pages, 15 figures, used emulapj.st

    Study of the Cir X--1 Broad Band Spectrum at Orbital Phases Close to the Apoastron

    Get PDF
    We report on the results of a BeppoSAX (1.8--200 keV) observation of the peculiar X-ray binary source Circinus X--1 (Cir X--1) at the orbital phases between 0.61 and 0.63. We find that three components are needed to fit the broad band spectrum: a blackbody component, at a temperature of 0.6\sim 0.6 keV, a Comptonized component, with a seed-photon temperature of 1.2\sim 1.2 keV, electron temperature of 6\sim 6 keV and optical depth of 1.7\sim 1.7, and a power-law component dominating the spectrum at energies higher than 20 keV. We interpret the blackbody as the emission from the accretion disk, while the Comptonized component probably comes from a corona surrounding the inner part of the system. This spectrum is different from that observed at the periastron (Iaria et al. 2001a) because of the presence of the blackbody component. We discuss the implications of this difference and the presence of the power-law component.Comment: 15 pages, 6 figures, accepted by Ap

    Departures From Axisymmetric Morphology and Dynamics in Spiral Galaxies

    Get PDF
    New HI synthesis data have been obtained for six face-on galaxies with the Very Large Array. These data and reanalyses of three additional data sets make up a sample of nine face-on galaxies analyzed for deviations from axisymmetry in morphology and dynamics. This sample represents a subsample of galaxies already analyzed for morphological symmetry properties in the R-band. Four quantitative measures of dynamical nonaxisymmetry are compared to one another and to the quantitative measures of morphological asymmetry in HI and R-band to investigate the relationships between nonaxisymmetric morphology and dynamics. We find no significant relationship between asymmetric morphology and most of the dynamical measures in our sample. A possible relationship is found, however, between morphology and dynamical position angle differences between approaching and receding sides of the galaxy.Comment: 24 pages, 19 figures, AASTeX, accepted for publication in AJ, postscript figures available at ftp://culebra.tn.cornell.edu/pub/david/figures.tar.g
    corecore