986 research outputs found

    Modern Wheat

    Get PDF
    The yields of wheat in the UK and across much of the world have increased massively over the past century, from a few tonnes per hectare at the start of the twentieth century to current UK average yields of between eight and nine tonnes per hectare. Many factors have contributed to these increases, with genetic improvement by plant breeding being particularly important in the second half of the 20th centur

    Analysis of mixed linkage β-glucan content and structure in different wheat flour milling fractions

    Get PDF
    β-glucan is a dietary fibre component with health benefits that relate to its structure and solubility. The polysaccharide structure consists predominantly of β-(1–4) linked cellotriosyl (G3) and cellotetraosyl (G4) units joined together with β-(1,3) linkages. The ratio of G3:G4 blocks affects the solubility with very high or very low ratios causing lower solubility. Wheat, a major staple crop, is a source of β-glucan in the human diet; however, there is a lack of research on β-glucan in wheat, especially white flour which is used in many food products. Here we quantified β-glucan in different wheat milling fractions, showing a low content in the first and second break (white) flour fractions (0.2%) with increasing amounts in bran flour (0.5%), wholemeal (0.8%) and bran (2.8%). A high proportion (30%) of β-glucan in the white flour fractions was soluble, while in bran a far smaller proportion (10%) was soluble. In agreement with differences in solubility, the G3:G4 ratio also differed, with the white flour fractions having lower ratios (∼2.5) and bran-containing fractions having higher ratios (∼3.8). We conclude that while total β-glucan in white flour is low, it is substantially soluble, and that high extraction and wholemeal flours have the potential to be a significant source of β-glucan

    Improving starch and fibre in wheat grain for human health

    Get PDF
    Reducing the prevalence of diet- related diseases, including obesity and type 2 diabetes, is a major challenge for health professionals, food manufacturers and governments in both developed and developing countries. Cereals are key targets in meeting this challenge as they are staple foods throughout the world and major sources of energy (derived principally from starch) and dietary fibre. Wheat is the staple cereal in the UK and Europe, and the UK Biotechnology and Biological Sciences Research Council (BBSRC)- supported Designing Future Wheat programme is focused on manipulating the content and composition of starch and fibre to improve health impacts, including reducing the glycaemic response and improving fermentation in the colon. This work is contributing to the development of improved cultivars by breeders and foods by processors. It is also increasing our understanding of the behaviour of these components in the human gastrointestinal (GI) tract and will contribute to the establishment of targets and recommendations for regulatory authorities

    Opinion Exploiting genomics to improve the benefits of wheat: Prospects and limitations

    Get PDF
    Conventional breeding has been immensely successful in increasing crop production to meet the demands of the growing global population, particularly for wheat where production has increased by over threefold over the last 60 years without a significant increase in the area of land used. However, the pace of improvement by conventional breeding is slow and limited by the range of variation present in wheat and species with which it can be crossed. Genomics can be defined as “an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes” (Wikipedia). As such it has the potential to revolutionise crop improvement, by accelerating the rate of progress and increasing the range of variation that is available. Despite this potential, progress in the application of biotechnology to improve wheat has been slow, particularly when applied to the quality of the grain for processing and nutrition. We will therefore consider the reasons for this and identify priorities for future research
    • …
    corecore