1,209 research outputs found

    Angular correlations of galaxy distribution

    Full text link
    We study the angular correlations of various galaxy catalogs (CfA1, SSRS1, Perseus-Pisces, APM Bright Galaxies and Zwicky). We find that the angular correlation exponent is γa=0.1±0.1\gamma_a= 0.1 \pm 0.1 rather than γa=0.7\gamma_a=0.7 as usually found by the standard correlation function ω(θ)\omega(\theta). We identify the problem in the artificial decay of ω(θ)\omega(\theta). Moreover we find that no characteristic angular scale is present in any of the analyzed catalogs. Finally we show that all the available data are consistent with each other and the angular distribution of galaxies is quite naturally compatible with a fractal structure with D≈2D \approx 2.Comment: 16 pages, latex, 3 postscript figures. Accepted for publication in Astrophysical Journal Letters. This paper is also available at http://www.phys.uniroma1.it/DOCS/PIL/pil.htm

    Spectral Analysis of the Stromlo-APM Survey II. Galaxy luminosity function and clustering by spectral type

    Get PDF
    We study the luminosity function and clustering properties of subsamples of local galaxies selected from the Stromlo-APM survey by the rest-frame equivalent widths of their Halpha and Oii emission lines. The b_J luminosity function of star-forming galaxies has a significantly steeper faint-end slope than that for quiescent galaxies: the majority of sub-L* galaxies are currently undergoing significant star formation. Emission line galaxies are less strongly clustered, both amongst themselves, and with the general galaxy population, than quiescent galaxies. Thus as well as being less luminous, star-forming galaxies also inhabit lower-density regions of the Universe than quiescent galaxies.Comment: 8 pages, 7 figures, MNRAS, in pres

    Spectral Analysis of the Stromlo-APM Survey I. Spectral Properties of Galaxies

    Full text link
    We analyze spectral properties of 1671 galaxies from the Stromlo-APM survey, selected to have 15 < b_J < 17.15 and having a mean redshift z = 0.05. This is a representative local sample of field galaxies, so the global properties of the galaxy population provide a comparative point for analysis of more distant surveys. We measure Halpha, Oii 3727, Sii 6716, 6731, Nii 6583 and Oi 6300 equivalent widths and the D_4000 break index. The 5A resolution spectra use an 8 arcsec slit, which typically covers 40-50% of the galaxy area. We find no evidence for systematic trends depending on the fraction of galaxy covered by the slit, and further analysis suggests that our spectra are representative of integrated galaxy spectra. We classify spectra according to their Halpha emission, which is closely related to massive star formation. Overall we find 61% of galaxies are Halpha emitters with rest-frame equivalent widths EW(Halpha) >= 2A. The emission-line galaxy (ELG) fraction is smaller than seen in the CFRS at z = 0.2 and is consistent with a rapid evolution of Halpha luminosity density. The ELG fraction, and EW(Halpha), increase at fainter absolute magnitudes, smaller projected area and smaller D_4000. In the local Universe, faint, small galaxies are dominated by star formation activity, while bright, large galaxies are more quiescent. This picture of the local Universe is quite different from the distant one, where bright galaxies appear to show rapidly-increasing activity back in time. (Abridged)Comment: 40 pages, 25 figures, MNRAS, in pres

    The local space density of dwarf galaxies

    Get PDF
    We estimate the luminosity function of field galaxies over a range of ten magnitudes (-22 < M_{B_J} < -12 for H_0 = 100 km/s/Mpc) by counting the number of faint APM galaxies around Stromlo-APM redshift survey galaxies at known distance. The faint end of the luminosity function rises steeply at M_{B_J} \approx -15, implying that the space density of dwarf galaxies is at least two times larger than predicted by a Schechter function with flat faint-end slope. Such a high abundance of dwarf galaxies at low redshift can help explain the observed number counts and redshift distributions of faint galaxies without invoking exotic models for galaxy evolution.Comment: 20 pages, 5 included postscript figures, uses AAS LaTex macros. Accepted for publication in the Astrophysical Journal. Two figures and associated discussion added; results and conclusions unchange

    Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks

    Get PDF
    Supervised artificial neural networks are used to predict useful properties of galaxies in the Sloan Digital Sky Survey, in this instance morphological classifications, spectral types and redshifts. By giving the trained networks unseen data, it is found that correlations between predicted and actual properties are around 0.9 with rms errors of order ten per cent. Thus, given a representative training set, these properties may be reliably estimated for galaxies in the survey for which there are no spectra and without human intervention

    Structures of solid hydrogen at 300K

    Get PDF
    We present results predicting experimentally measurable structural quantities from molecular dynamics studies of hydrogen. In doing this, we propose a paradigm shift for experimentalists -- that the predictions from such calculations should be seen as the most likely hypotheses. Specifically, the experimental results should be aiming to distinguish between the candidate low-energy structures, rather than aiming to solve the simplest structure consistent with the data. We show that the room temperature X-ray diffraction patterns for hydrogen phases I, III, IV and V are very similar, with only small peaks denoting symmetry-breaking from the hcp Phase I. Because they incorporate atomic displacements the XRD patterns implied by molecular dynamics calculations are very different from those arising from the static minimum enthalpy structures found by structure searching. Simulations also show that within Phase I the molecular becomes increasingly confined to the basal plane and suggest the possibility of an unusual critical point terminating the Phase I-III boundary line

    Intrinsic Axis Ratio Distribution of Early-type Galaxies From Sloan Digital Sky Survey

    Full text link
    Using Sloan Digital Sky Survey Data Release 5, we have investigated the intrinsic axis ratio distribution (ARD) for early-type galaxies. We have constructed a volume-limited sample of 3,922 visually-inspected early-type galaxies at 0.05≤z≤0.060.05 \leq z \leq 0.06 carefully considering sampling biases caused by the galaxy isophotal size and luminosity. We attempt to de-project the observed ARD into three-dimensional types (oblate, prolate, and triaxial), which are classified in terms of triaxiality. We confirm that no linear combination of randomlyrandomly-distributed axis ratios of the three types can reproduce the observed ARD. However, using Gaussian intrinsic distributions, we have found reasonable fits to the data with preferred mean axis ratios for oblate, prolate, and triaxial (triaxials in two axis ratios), μo=0.44,μp=0.72,μt,β=0.92,μt,γ=0.78\mu_o=0.44, \mu_p=0.72, \mu_{t,\beta}=0.92, \mu_{t,\gamma}=0.78 where the fractions of oblate, prolate and triaxial types are \textrm{O:P:T}=0.29^{\pm0.09}:0.26^{\pm0.11}:0.45^{\pm0.13}.Wehavealsofoundthattheluminoussample(. We have also found that the luminous sample (-23.3 < M_r \leq -21.2)tendstohavemoretriaxialsthanthelessluminous() tends to have more triaxials than the less luminous (-21.2 < M_r <-19.3$) sample does. Oblate is relatively more abundant among the less luminous galaxies. Interestingly, the preferences of axis ratios for triaxial types in the two luminosity classes are remarkably similar. We have not found any significant influence of the local galaxy number density on ARD. We show that the results can be seriously affected by the details in the data selection and type classification scheme. Caveats and implications on galaxy formation are discussed.Comment: 9 pages, 11 figures, Accepted for publication in Ap
    • …
    corecore