21,985 research outputs found

    2002/03 U.S. SUGAR SUPPLY AND USE

    Get PDF
    Crop Production/Industries,

    Sugar Outlook

    Get PDF
    Crop Production/Industries,

    2005/06 U.S. SUGAR SUPPLY AND USE

    Get PDF
    Crop Production/Industries,

    2007/08 U.S. Sugar Supply and Use

    Get PDF
    Crop Production/Industries,

    2004/05 U.S. SUGAR SUPPLY AND USE

    Get PDF
    Crop Production/Industries,

    2003/04 U.S. SUGAR SUPPLY AND USE

    Get PDF
    Crop Production/Industries,

    Ribosomal trafficking is reduced in Schwann cells following induction of myelination.

    Get PDF
    Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body), but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following initiation of myelination

    Cerebral correlates and statistical criteria of cross-modal face and voice integration

    Get PDF
    Perception of faces and voices plays a prominent role in human social interaction, making multisensory integration of cross-modal speech a topic of great interest in cognitive neuroscience. How to define po- tential sites of multisensory integration using functional magnetic resonance imaging (fMRI) is currently under debate, with three statistical criteria frequently used (e.g., super-additive, max and mean criteria). In the present fMRI study, 20 participants were scanned in a block design under three stimulus conditions: dynamic unimodal face, unimodal voice and bimodal face–voice. Using this single dataset, we examine all these statistical criteria in an attempt to define loci of face–voice integration. While the super-additive and mean criteria essentially revealed regions in which one of the unimodal responses was a deactivation, the max criterion appeared stringent and only highlighted the left hippocampus as a potential site of face– voice integration. Psychophysiological interaction analysis showed that connectivity between occipital and temporal cortices increased during bimodal compared to unimodal conditions. We concluded that, when investigating multisensory integration with fMRI, all these criteria should be used in conjunction with ma- nipulation of stimulus signal-to-noise ratio and/or cross-modal congruency

    From Dirac to Diffusion: Decoherence in Quantum Lattice Gases

    Full text link
    We describe a model for the interaction of the internal (spin) degree of freedom of a quantum lattice-gas particle with an environmental bath. We impose the constraints that the particle-bath interaction be fixed, while the state of the bath is random, and that the effect of the particle-bath interaction be parity invariant. The condition of parity invariance defines a subgroup of the unitary group of actions on the spin degree of freedom and the bath. We derive a general constraint on the Lie algebra of the unitary group which defines this subgroup, and hence guarantees parity invariance of the particle-bath interaction. We show that generalizing the quantum lattice gas in this way produces a model having both classical and quantum discrete random walks as different limits. We present preliminary simulation results illustrating the intermediate behavior in the presence of weak quantum noise.Comment: To appear in QI
    corecore