42 research outputs found

    A reconnaissance survey of farmers’ awareness of hypomagnesaemic tetany in UK cattle and sheep farms

    Get PDF
    Hypomagnesaemic tetany (HypoMgT) in ruminants is a physiological disorder caused by inadequate intake or impaired absorption of magnesium (Mg) in the gut. If it is not detected and treated in time, HypoMgT can cause the death of the affected animal. A semi-structured questionnaire survey was conducted from July 2016–2017 to assess farmers’ awareness of HypoMgT in cattle and sheep in the UK. The questionnaire was distributed to farmers at farm business events and agricultural shows, and through a collaborative group of independent veterinary practices to their clients. Farmers were asked about (i) the incidence of presumed HypoMgT (PHT); (ii) their strategies to treat or prevent HypoMgT; (iii) mineral tests on animals, forage and soil, and (iv) farm enterprise type. A total of 285 responses were received from 82 cattle, 157 mixed cattle and sheep, and 46 sheep farmers, of whom 39% reported HypoMgT in their livestock, affecting 1–30 animals. Treatment and/or prevention against HypoMgT was reported by 96% respondents with PHT and 79% of those without. Mineral tests on animal, forage, and soil was conducted by 24%, 53%, and 66% of the respondents, respectively, regardless of PHT. There was a highly significant association between the use of interventions to tackle HypoMgT and the incidence of PHT (p < 0.01). The top three treatment/prevention strategies used were reported as being free access supplementation (149), in feed supplementation (59) and direct to animal treatments (drenches, boluses and injections) (45) although these did vary by farm type. Although some (9) reported using Mg-lime, no other pasture management interventions were reported (e.g., Mg-fertilisation or sward composition). Generally, the results indicate that UK farmers are aware of the risks of HypoMgT. A more integrated soil-forage-animal assessment may improve the effectiveness of tackling HypoMgT and help highlight the root causes of the problem

    Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines

    Get PDF
    Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naĂŻve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naĂŻve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naĂŻve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-Îł, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved

    Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. Perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits

    Get PDF
    Background and Aims Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). Methods BAC-based physical maps for L. perenne were constructed from similar to 212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. Key Results Between similar to 3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with similar to 35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. Conclusions Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.UK Biotechnology and Biological Sciences Research Council [BB/J004405/1, BB/CSP1730/1, BB/G012342/1]; Germinal Holdings (UK); Syngenta (UK); Vialactia Biosciences (NZ)Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Is the superior verbal memory span of Mandarin speakers due to faster rehearsal?

    Get PDF
    It is well established that digit span in native Chinese speakers is atypically high. This is commonly attributed to a capacity for more rapid subvocal rehearsal for that group. We explored this hypothesis by testing a group of English-speaking native Mandarin speakers on digit span and word span in both Mandarin and English, together with a measure of speed of articulation for each. When compared to the performance of native English speakers, the Mandarin group proved to be superior on both digit and word spans while predictably having lower spans in English. This suggests that the Mandarin advantage is not limited to digits. Speed of rehearsal correlated with span performance across materials. However, this correlation was more pronounced for English speakers than for any of the Chinese measures. Further analysis suggested that speed of rehearsal did not provide an adequate account of differences between Mandarin and English spans or for the advantage of digits over words. Possible alternative explanations are discussed

    From short-term store to multicomponent working memory: The role of the modal model

    Get PDF
    The term “modal model” reflects the importance of Atkinson and Shiffrin’s paper in capturing the major developments in the cognitive psychology of memory that were achieved over the previous decade, providing an integrated framework that has formed the basis for many future developments. The fact that it is still the most cited model from that period some 50 years later has, we suggest, implications for the model itself and for theorising in psychology more generally. We review the essential foundations of the model before going on to discuss briefly the way in which one of its components, the short-term store, had influenced our own concept of a multicomponent working memory. This is followed by a discussion of recent claims that the concept of a short-term store be replaced by an interpretation in terms of activated long-term memory. We present several reasons to question these proposals. We conclude with a brief discussion of the implications of the longevity of the modal model for styles of theorising in cognitive psychology
    corecore