1 research outputs found

    Cone-Rod Dystrophy Due to Mutations in a Novel Photoreceptor-Specific Homeobox Gene (CRX) Essential for Maintenance of the Photoreceptor

    Get PDF
    Genes associated with inherited retinal degeneration have been found to encode proteins required for phototransduction, metabolism, or structural support of photoreceptors. Here we show that mutations in a novel photoreceptor-specific homeodomain transcription factor gene (CRX) cause an autosomal dominant form of cone-rod dystrophy (adCRD) at the CORD2 locus on chromosome 19q13. In affected members of a CORD2-linked family, the highly conserved glutamic acid at the first position of the recognition helix is replaced by alanine (E80A). In another CRD family, a 1 bp deletion (E168 [delta1 bp]) within a novel sequence, the WSP motif, predicts truncation of the C-terminal 132 residues of CRX. Mutations in the CRX gene cause adCRD either by haploinsufficiency or by a dominant negative effect and demonstrate that CRX is essential for the maintenance of mammalian photoreceptorsThis work was supported by the RP Foundation of Canada (R. R. M.), the Foundation Fighting Blindness (R. R. M. and S. G. J.), the Canadian Genetic Disease Network (R. R. M. and A. D.), the Medical Research Council of Canada (R. R. M.), The Wellcome Trust (043825/Z/95) and the Human Genome Mapping Resource Centre (C. Y. G.-E. and S. S. B.), the Howard Hughes Medical Institute and NIH R01 EY0 8064 (C. L. C.), the Canadian Genome Analysis and Technology Genome Resource Facility (S. W. S. and L.-C. T.), the NIH/NEI (EY05627) (S. G. J.), and the Greek National Scholarship Foundation (M. P.). R. R. M. and L.-C. T. are International Research Scholars of the Howard Hughes Medical Institute
    corecore