25 research outputs found
Investigation of Truncated Waveguides
The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands
A waveguide-coupled thermally-isolated radiometric source
The design and validation of a dual polarization source for waveguide-coupled
millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal
source is a waveguide mounted absorbing conical dielectric taper. The absorber
is thermally isolated with a kinematic suspension that allows the guide to be
heat sunk to the lowest bath temperature of the cryogenic system. This approach
enables the thermal emission from the metallic waveguide walls to be
subdominant to that from the source. The use of low thermal conductivity Kevlar
threads for the kinematic mount effectively decouples the absorber from the
sensor cold stage. Hence, the absorber can be heated to significantly higher
temperatures than the sensor with negligible conductive loading. The kinematic
suspension provides high mechanical repeatability and reliability with thermal
cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over
the full waveguide band where the dominant deviation from unity arrises from
the waveguide ohmic loss. The observed thermal time constant of the source is
40 s when the absorber temperature is 15 K. The specific heat of the lossy
dielectric MF-117 is well approximated by C_v(T)=0.12\,T\,^{2.06} mJ g
K between 3.5 K and 15 K
Precision control of thermal transport in cryogenic single-crystal silicon devices
We report on the diffusive-ballistic thermal conductance of multi-moded
single-crystal silicon beams measured below 1 K. It is shown that the phonon
mean-free-path is a strong function of the surface roughness
characteristics of the beams. This effect is enhanced in diffuse beams with
lengths much larger than , even when the surface is fairly smooth, 5-10
nm rms, and the peak thermal wavelength is 0.6 m. Resonant phonon
scattering has been observed in beams with a pitted surface morphology and
characteristic pit depth of 30 nm. Hence, if the surface roughness is not
adequately controlled, the thermal conductance can vary significantly for
diffuse beams fabricated across a wafer. In contrast, when the beam length is
of order , the conductance is dominated by ballistic transport and is
effectively set by the beam area. We have demonstrated a uniformity of 8%
in fractional deviation for ballistic beams, and this deviation is largely set
by the thermal conductance of diffuse beams that support the
micro-electro-mechanical device and electrical leads. In addition, we have
found no evidence for excess specific heat in single-crystal silicon membranes.
This allows for the precise control of the device heat capacity with normal
metal films. We discuss the results in the context of the design and
fabrication of large-format arrays of far-infrared and millimeter wavelength
cryogenic detectors
A Truncated Waveguide Phase Shifter
The design, fabrication and performance of a simple phase shifter based upon truncated circular and square waveguides is presented. An emphasis is placed upon validation of simple analytical formulae that describe the propagation properties of the structure. A test device is prototyped at approximately 40GHz; however, the concepts explored can be directly extended to millimeter and submillimeter applications
Design requirements for the Wide-field Infrared Transient Explorer (WINTER)
The Wide-field Infrared Transient Explorer (WINTER) is a 1x1 degree infrared survey telescope under devel- opment at MIT and Caltech, and slated for commissioning at Palomar Observatory in 2021. WINTER is a seeing-limited infrared time-domain survey and has two main science goals: (1) the discovery of IR kilonovae and r-process materials from binary neutron star mergers and (2) the study of general IR transients, including supernovae, tidal disruption events, and transiting exoplanets around low mass stars. We plan to meet these science goals with technologies that are relatively new to astrophysical research: hybridized InGaAs sensors as an alternative to traditional, but expensive, HgCdTe arrays and an IR-optimized 1-meter COTS telescope. To mitigate risk, optimize development efforts, and ensure that WINTER meets its science objectives, we use model-based systems engineering (MBSE) techniques commonly featured in aerospace engineering projects. Even as ground-based instrumentation projects grow in complexity, they do not often have the budget for a full-time systems engineer. We present one example of systems engineering for the ground-based WINTER project, featuring software tools that allow students or staff to learn the fundamentals of MBSE and capture the results in a formalized software interface. We focus on the top-level science requirements with a detailed example of how the goal of detecting kilonovae flows down to WINTER’s optical design. In particular, we discuss new methods for tolerance simulations, eliminating stray light, and maximizing image quality of a fly’s-eye design that slices the telescope’s focus onto 6 non-buttable, IR detectors. We also include a discussion of safety constraints for a robotic telescope
An open source, FPGA-based LeKID readout for BLAST-TNG: Pre-flight results
We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology on the upcoming NASA Next Generation Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST-TNG) to measure the polarized emission of Galactic dust at wavelengths of 250, 350 and 500 microns. The BLAST-TNG receiver incorporates the first arrays of Lumped Element Kinetic Inductance Detectors (LeKID) along with the first microwave multiplexing readout electronics to fly in a space-like environment and will significantly advance the TRL for these technologies. After the flight of BLAST-TNG, we will continue to improve the performance of the detectors and readout electronics for the next generation of balloon-borne instruments and for use in a future FIR Surveyor.
Read More: http://www.worldscientific.com/doi/abs/10.1142/S225117171641003
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays
Polarized thermal emission from interstellar dust grains can be used to map
magnetic fields in star forming molecular clouds and the diffuse interstellar
medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced
degree-scale polarization maps of several nearby molecular clouds with
arcminute resolution. The success of BLASTPol has motivated a next-generation
instrument, BLAST-TNG, which will use more than 3000 linear polarization
sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m
diameter carbon fiber primary mirror to make diffraction-limited observations
at 250, 350, and 500 m. With 16 times the mapping speed of BLASTPol,
sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to
examine nearby molecular clouds and the diffuse galactic dust polarization
spectrum in unprecedented detail. The 250 m detector array has been
integrated into the new cryogenic receiver, and is undergoing testing to
establish the optical and polarization characteristics of the instrument.
BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for
applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from
Antarctica in December 2017 for 28 days and will be the first balloon-borne
telescope to offer a quarter of the flight for "shared risk" observing by the
community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy VIII, June 29th, 201
The Balloon-Borne Large Aperture Submillimeter Telescope Observatory
The BLAST Observatory is a proposed superpressure balloon-borne polarimeter
designed for a future ultra-long duration balloon campaign from Wanaka, New
Zealand. To maximize scientific output while staying within the stringent
superpressure weight envelope, BLAST will feature new 1.8m off-axis optical
system contained within a lightweight monocoque structure gondola. The payload
will incorporate a 300L He cryogenic receiver which will cool 8,274
microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an
adiabatic demagnetization refrigerator (ADR) in combination with a He
sorption refrigerator all backed by a liquid helium pumped pot operating at 2K.
The detector readout utilizes a new Xilinx RFSOC-based system which will run
the next-generation of the BLAST-TNG KIDPy software. With this instrument we
aim to answer outstanding questions about dust dynamics as well as provide
community access to the polarized submillimeter sky made possible by
high-altitude observing unrestricted by atmospheric transmission. The BLAST
Observatory is designed for a minimum 31-day flight of which 70 will be
dedicated to observations for BLAST scientific goals and the remaining 30
will be open to proposals from the wider astronomical community through a
shared-risk proposals program.Comment: Presented at SPIE Ground-based and Airborne Telescopes VIII, December
13-18, 202
Characterization, deployment, and in-flight performance of the BLAST-TNG cryogenic receiver
The Next Generation Balloon-borne Large Aperture Submillimeter Telescope
(BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust
and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic
flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID
pixels, respectively. The pixels are formed from two orthogonally oriented,
crossed, linear-polarization sensitive MKID antennae. The arrays are cooled to
sub 300mK temperatures and stabilized via a closed cycle He sorption fridge
in combination with a He vacuum pot. The detectors are read out through a
combination of the second-generation Reconfigurable Open Architecture Computing
Hardware (ROACH2) and custom RF electronics designed for BLAST-TNG. The
firmware and software designed to readout and characterize these detectors was
built from scratch by the BLAST team around these detectors, and has been
adapted for use by other MKID instruments such as TolTEC and OLIMPO. We present
an overview of these systems as well as in-depth methodology of the
ground-based characterization and the measured in-flight performance.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy X, December 13-18, 202