195 research outputs found

    Activity Classification Using Raw Range and I & Q Radar Data with Long Short Term Memory Layers

    Get PDF
    This paper presents the first initial results of using radar raw I & Q data and range profiles combined with Long Short Term Memory layers to classify human activities. Although tested only on simple classification problems, this is an innovative approach that enables to bypass the conventional usage of Doppler-time patterns (spectrograms) as inputs of the Long Short Term Memory layers, and adopt instead sequences of range profiles or even raw complex data as inputs. A maximum 99.56% accuracy and a mean accuracy of 97.67% was achieved by treating the radar data as these time sequences, in an effective scheme using a deep learning approach that did not require the pre-processing of the radar data to generate spectrograms and treat them as images. The prediction time needed for a given input testing sample is also reported, showing a promising path for real-time implementation once the Long Short Term Memory layers network is properly trained

    Animal lameness detection with radar sensing

    Get PDF
    Lameness is a significant problem for performance horses and farmed animals, with severe impact on animal welfare and treatment costs. Lameness is commonly diagnosed through subjective scoring methods performed by trained veterinary clinicians, but automatic methods using suitable sensors would improve efficiency and reliability. In this paper, we propose the use of radar micro-Doppler signatures for contactless and automatic identification of lameness, and present preliminary results for dairy cows, sheep, and horses. These proof-of-concept results are promising, with classification accuracy above 85% for dairy cows, around 92% for horses, and close to 99% for sheep

    GANs and alternative methods of synthetic noise generation for domain adaption of defect classification of Non-destructive ultrasonic testing

    Full text link
    This work provides a solution to the challenge of small amounts of training data in Non-Destructive Ultrasonic Testing for composite components. It was demonstrated that direct simulation alone is ineffective at producing training data that was representative of the experimental domain due to poor noise reconstruction. Therefore, four unique synthetic data generation methods were proposed which use semi-analytical simulated data as a foundation. Each method was evaluated on its classification performance of real experimental images when trained on a Convolutional Neural Network which underwent hyperparameter optimization using a genetic algorithm. The first method introduced task specific modifications to CycleGAN, to learn the mapping from physics-based simulations of defect indications to experimental indications in resulting ultrasound images. The second method was based on combining real experimental defect free images with simulated defect responses. The final two methods fully simulated the noise responses at an image and signal level respectively. The purely simulated data produced a mean classification F1 score of 0.394. However, when trained on the new synthetic datasets, a significant improvement in classification performance on experimental data was realized, with mean classification F1 scores of 0.843, 0.688, 0.629, and 0.738 for the respective approaches.Comment: 16 Page

    A prototype deep learning paraphrase identification service for discovering information cascades in social networks

    Get PDF
    Identifying the provenance of information posted on social media and how this information may have changed over time can be very helpful in assessing its trustworthiness. Here, we introduce a novel mechanism for discovering “post-based” information cascades, including the earliest relevant post and how its information has evolved over subsequent posts. Our prototype leverages multiple innovations in the combination of dynamic data sub-sampling and multiple natural language processing and analysis techniques, benefiting from deep learning architectures. We evaluate its performance on EMTD, a dataset that we have generated from our private experimental instance of the decentralised social network Mastodon, as well as the benchmark Microsoft Research Paraphrase Corpus, reporting no errors in sub-sampling based on clustering, and an average accuracy of 92% and F1 score of 93% for paraphrase identification

    A comparison of methods for generating synthetic training data for domain adaption of deep learning models in ultrasonic non-destructive evaluation

    Get PDF
    This work provides a solution to the challenge of small amounts of training data in Non-Destructive Ultrasonic Testing for composite components. It was demonstrated that direct simulation alone is ineffective at producing training data that was representative of the experimental domain due to poor noise reconstruction. Therefore, four unique synthetic data generation methods were proposed which use semi-analytical simulated data as a foundation. Each method was evaluated for its performance in the classification of real experimental images when trained on a Convolutional Neural Network which underwent hyperparameter optimization using a genetic algorithm. The first method introduced task specific modifications to CycleGAN, a generative network for image-to-image translation, to learn the mapping from physics-based simulations of defect indications to experimental indications in resulting ultrasound images. The second method was based on combining real experimental defect free images with simulated defect responses. The final two methods fully simulated the noise responses at an image and signal level respectively. The purely simulated data produced a mean classification F1 score of 0.394. However, when trained on the new synthetic datasets, a significant improvement in classification performance on experimental data was realized, with mean classification F1 scores of 0.843, 0.688, 0.629, and 0.738 for the respective approaches
    • …
    corecore