3 research outputs found

    Novel Resistant Potato Starches on Glycemia and Satiety in Humans

    Get PDF
    This study was designed to determine the efficacy of two novel type-four resistant starches (RS4) on postprandial glycemia and ratings of fullness. Volunteers (n = 10) completed completed five interventions designed to determine the glycemic and satiety (fullness) effects of the starches (38 g,) alone and when added on top of available carbohydrate. The dose of the starches provided 30 g of resistant starch per treatment. The treatments were: commercial resistant starch added to water (PF−), noncommercial resistant starch added to water (PR−), dextrose solution (DEX, 50 g), and DEX with PenFibe starch (PF+), and DEX with the non-commercial starch added (PR+). Blood glucose was measured in the fasted state and following the randomly assigned treatments at 30, 45, 60, 90, and 120 minutes post-consumption. A visual analog scale was used to determine fullness at each time point. There were no differences in the glucose incremental areas under the curve (iAUC) for PF+ and PR+ compared with DEX. The PF− and PR− treatments had decreased (P < 0.05) iAUCs for glucose compared with DEX, PF+, and PR+. There were no treatment differences for RoF. The dose (38 g) of starches did not to alter glucose responses when added on top of 50 g of dextrose

    Gut microbiome composition is linked to whole grain-induced immunological improvements

    Get PDF
    The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans

    Clinical Study Novel Resistant Potato Starches on Glycemia and Satiety in Humans

    No full text
    This study was designed to determine the efficacy of two novel type-four resistant starches (RS4) on postprandial glycemia and ratings of fullness. Volunteers (n = 10) completed completed five interventions designed to determine the glycemic and satiety (fullness) effects of the starches (38 g,) alone and when added on top of available carbohydrate. The dose of the starches provided 30 g of resistant starch per treatment. The treatments were: commercial resistant starch added to water (PF−), noncommercial resistant starch added to water (PR−), dextrose solution (DEX, 50 g), and DEX with PenFibe starch (PF+), and DEX with the noncommercial starch added (PR+). Blood glucose was measured in the fasted state and following the randomly assigned treatments at 30, 45, 60, 90, and 120 minutes post-consumption. A visual analog scale was used to determine fullness at each time point. There were no differences in the glucose incremental areas under the curve (iAUC) for PF+ and PR+ compared with DEX. The PF− and PR− treatments had decreased (P &lt; 0.05) iAUCs for glucose compared with DEX, PF+, and PR+. There were no treatment differences for RoF. The dose (38 g) of starches did not to alter glucose responses when added on top of 50 g of dextrose
    corecore