10 research outputs found

    A comparison of software for analysis of rare and common short tandem repeat (STR) variation using human genome sequences from clinical and population-based samples

    No full text
    Short tandem repeat (STR) variation is an often overlooked source of variation between genomes. STRs comprise about 3% of the human genome and are highly polymorphic. Some cause Mendelian disease, and others affect gene expression. Their contribution to common disease is not well-understood, but recent software tools designed to genotype STRs using short read sequencing data will help address this. Here, we compare software that genotypes common STRs and rarer STR expansions genome-wide, with the aim of applying them to population-scale genomes. By using the Genome-In-A-Bottle (GIAB) consortium and 1000 Genomes Project short-read sequencing data, we compare performance in terms of sequence length, depth, computing resources needed, genotyping accuracy and number of STRs genotyped. To ensure broad applicability of our findings, we also measure genotyping performance against a set of genomes from clinical samples with known STR expansions, and a set of STRs commonly used for forensic identification. We find that HipSTR, ExpansionHunter and GangSTR perform well in genotyping common STRs, including the CODIS 13 core STRs used for forensic analysis. GangSTR and ExpansionHunter outperform HipSTR for genotyping call rate and memory usage. ExpansionHunter denovo (EHdn), STRling and GangSTR outperformed STRetch for detecting expanded STRs, and EHdn and STRling used considerably less processor time compared to GangSTR. Analysis on shared genomic sequence data provided by the GIAB consortium allows future performance comparisons of new software approaches on a common set of data, facilitating comparisons and allowing researchers to choose the best software that fulfils their needs

    Reassessing the association of MUC5B with survival in idiopathic pulmonary fibrosis.

    No full text
    A variant in the mucin 5B gene (MUC5B) is strongly associated with the risk of idiopathic pulmonary fibrosis. However, the same variant is associated with increased survival time. Previous work suggested that this may be explained by index event bias, with the true effect being to decrease survival. Here, we reassessed this claim using more recent methods and datasets. We found that the statistical assumptions of the previous analysis did not hold, and instead, we applied recent methods of corrected weighted least squares, MR-RAPS and Slope-hunter to both the previous data and an updated consortium meta-analysis. However, these analyses did not yield robust evidence for increased or decreased survival. In simulations of a true effect of decreased survival, we did not observe any realistic scenario in which index event bias led to an observed effect of increased survival. We therefore regard as unsafe the claim that MUC5B has a true effect of decreased survival. Alternative explanations should be sought to explain the observed association with increased survival

    CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    No full text
    There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01–0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 × 10−10, 6.0 × 10−5, and 2.9 × 10−3). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders

    Genetic overlap between idiopathic pulmonary fibrosis and COVID-19.

    No full text
    Coronavirus disease 2019 (COVID-19) is an infectious disease potentially leading to long lasting respiratory symptoms and has resulted in over 4 million deaths worldwide. Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease (ILD) characterised by an aberrant response to alveolar injury leading to progressive scarring of the lungs. Individuals with ILD are at a higher risk of death from COVID-19 [1] </p

    The Use of Genetic Information to Define Idiopathic Pulmonary Fibrosis in UK Biobank

    No full text
    To the Editor: Idiopathic pulmonary fibrosis (IPF) is a rare disease with prevalence of 50 in 100,000 cases in the UK.1 Genome-wide association studies have identified 20 independent single nucleotide polymorphisms (SNPs) that are associated with IPF risk to date.2, 3, 4 A single common SNP in the MUC5B gene promoter region (rs35705950) has a large effect on IPF risk with each copy of the T allele that is associated with a 4- to 5-fold increased risk of IPF.4,5 Most datasets for genetic studies of IPF were derived from dedicated IPF cohort studies, registries, and clinical trials, which are usually modest in size. Large general population cohorts, such as UK Biobank, represent a valuable resource for increasing IPF case sample sizes for molecular epidemiologic studies. However, observed effect size estimates for rs35705950 on IPF risk in general population cohorts, for which cases are defined with the use of the International Classification of Diseases, revision 10 (ICD-10)6 J84.1 code, are smaller than those that are estimated in clinically-derived datasets.7 Although this attenuation could be explained by misclassification of IPF cases, the misclassification may be mitigated by the substantial gain in statistical power that can be leveraged from very large biobanks. However, more accurate classification of cases and control subjects in biobanks could provide more accurate effect estimates for use in further analyses. Given this, we proposed that the IPF risk effect size of rs35705950 could be used to evaluate and refine the choice of codes to define IPF cases. We applied this approach in UK Biobank.</p

    Rheumatoid arthritis and idiopathic pulmonary fibrosis: a bidirectional Mendelian randomisation study

    No full text
    BackgroundA usual interstitial pneumonia (UIP) pattern of lung injury is a key feature of idiopathic pulmonary fibrosis (IPF) and is also observed in up to 40% of individuals with rheumatoid arthritis (RA)-associated interstitial lung disease (RA-ILD). The RA-UIP phenotype could result from either a causal relationship of RA on UIP or vice versa, or from a simple co-occurrence of RA and IPF due to shared demographic, genetic or environmental risk factors.MethodsWe used two-sample bidirectional Mendelian randomisation (MR) to test the hypothesis of a causal effect of RA on UIP and of UIP on RA, using variants from genome-wide association studies (GWAS) of RA (separately for seropositive (18 019 cases and 991 604 controls) and seronegative (8515 cases and 1 015 471 controls) RA) and of IPF (4125 cases and 20 464 controls) as genetic instruments. Sensitivity analyses were conducted to assess the robustness of the results to violations of the MR assumptions.FindingsIPF showed a significant causal effect on seropositive RA, with developing IPF increasing the risk of seropositive RA (OR=1.06, 95% CI: 1.04 to 1.08, p</p

    Genome-wide association study across five cohorts identifies five novel loci associated with idiopathic pulmonary fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition with poor survival times. We previously published a genome-wide meta-analysis of IPF risk across three studies with independent replication of associated variants in two additional studies. To maximise power and to generate more accurate effect size estimates, we performed a genome-wide meta-analysis across all five studies included in the previous IPF risk genome-wide association studies. We used the distribution of effect sizes across the five studies to assess the replicability of the results and identified five robust novel genetic association signals implicating mTOR (mammalian target of rapamycin) signalling, telomere maintenance and spindle assembly genes in IPF risk

    DeepPheWAS: an R package for phenotype generation and association analysis for phenome-wide association studies

    No full text
    SummaryDeepPheWAS is an R package for phenome-wide association studies that creates clinically curated composite phenotypes and integrates quantitative phenotypes from primary care data, longitudinal trajectories of quantitative measures, disease progression and drug response phenotypes. Tools are provided for efficient analysis of association with any genetic input, under any genetic model, with optional sex-stratified analysis, and for developing novel phenotypes.Availability and implementationThe DeepPheWAS R package is freely available under GNU general public licence v3.0 from at https://github.com/Richard-Packer/DeepPheWAS.Supplementary informationSupplementary data are available at Bioinformatics online.</p

    Genetic Associations and Architecture of Asthma-COPD Overlap

    No full text
    Background Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. Research Question What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? Study Design and Methods We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P Results We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P Interpretation We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.</p

    Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: a prospective multicentre cohort study.

    No full text
    BackgroundSleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea.MethodsCircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2-7 months after hospital discharge and a later time point 10-14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107).Findings2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4-6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5-8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (-19%; 95% CI -20 to -16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18-39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27-41% of this effect.InterpretationSleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition.FundingUK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council
    corecore