13 research outputs found

    Deoxyribonucleoside kinases - diversity and practical use

    No full text

    New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine

    No full text
    Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT).We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy

    Expression of tomato thymidine kinase 1 by means of the baculovirus expression vector system

    No full text
    Tomato thymidine kinase 1 (ToTK1) is a deoxyribonucleoside kinase (dNK) that has been subject to study because of its potential to phosphorylate the nucleoside analogue 3-azido-2,3-dideoxythymidine (azidothymidine, AZT) equally well as its natural substrate thymidine (dThd). The combination of ToTK1 and AZT has been tested in two animal studies for its efficiency and use in suicide gene therapy for malignant glioma. The determination of the 3D structure of ToTK1 might shed light on the structure–function relationships of nucleoside activation by this enzyme and thereby show routes toward further improvement of ToTK1 and other TK1-like dNKs for suicide gene therapy. Here we report the successful expression of both full-length ToTK1 and a C-terminal truncated ToTK1 in Spodoptera frugiperda and Trichoplusia ni insect cells using the baculovirus expression vector system. This constitutes a further step on the road to determine the 3D structure of the first TK1 of plant origin, but also an enzyme with great potential for dNK-mediated suicide gene therapy

    Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family

    No full text
    Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs

    Tomato thymidine kinase-based suicide gene therapy for malignant glioma-an alternative for Herpes Simplex virus-1 thymidine kinase.

    No full text
    Malignant gliomas (MGs) are the most common malignant primary brain tumors with a short life estimate accompanied by a marked reduction in the quality of life. Herpes Simplex virus-1 thymidine kinase ganciclovir (HSV-TK/GCV) system is the best characterized enzyme prodrug therapy in use. However, lipophobicity of GCV and low enzymatic activity of HSV-TK reduce the treatment efficacy. Tomato TK (ToTK) has shown high activity in combination with its specific substrate azidothymidine (AZT). The aim of this study was to evaluate whether ToTK/AZT could be used as an alternative to HSV-TK/GCV therapy. Both treatments demonstrated cytotoxicity in human MG cells in vitro. In vivo, both treatments decreased tumor growth and tumors were smaller in comparison with controls in mouse orthotopic MG model. Survival of ToTK/AZT-treated mice was significantly increased compared with control mice (*P<0.05) but not as compared with HSV-TK/GCV-treated mice. No significant differences were observed in clinical chemistry safety analyses. We conclude that both treatments showed a beneficial treatment response in comparison to controls on tumor growth and ToTK/AZT also on survival. There were no significant differences between these treatments. Therefore ToTK/AZT could be considered as an alternative treatment option for MG because of its favorable therapeutic characteristics.Cancer Gene Therapy advance online publication, 23 January 2015; doi:10.1038/cgt.2014.76

    Characterization of oligomeric and kinetic properties of tomato thymidine kinase 1.

    No full text
    The gene encoding thymidine kinase 1 from tomato (toTK1) has in combination with azidothymidine (AZT) recently been proposed as a powerful suicide gene for anticancer gene therapy. The toTK1/AZT combination has been demonstrated to have several advantages for the treatment of glioblastomas because AZT can easily penetrate the blood-brain barrier and toTK1 can efficiently phosphorylate AZT and also AZT-monophosphate. In a pursuit to further understand the properties of toTK1, we examined the oligomerization properties of recombinant toTK1 and its effect on enzyme kinetics. Previously, it has been shown that human TK1 is a dimer in the absence of ATP and a tetramer if preincubated with ATP. However, we show here that ATP preincubation did not result in a structural shift from dimer to tetramer in toTK1. For human TK1 pretreated with ATP, the K(m) value decreased 20-fold, but toTK1's K(m) value did not show a dependence on the presence or absence of ATP. Furthermore, toTK1 was always found in a highly active form

    A green synthesis of vidarabine 5’-monophosphate via a one-pot multienzymatic reaction catalyzed by immobilized biocatalysts

    No full text
    In nature, enzyme cascades can be found in many metabolic pathways. The idea of using multienzymatic systems to mimic these processes is gaining interest for production of chemical compounds. A type of multi-enzymatic application is the use of multiple enzymes for shifting reaction equilibria. This strategy relies on removing intermediates, inhibitory products or byproducts, via a second enzymatic reaction. In the context of a multi-enzymatic system, a one-pot process uses more than one enzyme in a single reactor.1 We here describe a three-step sequential enzymatic reaction for the one-pot synthesis of vidarabine 5’-monophosphate (araA-MP), an antiviral drug, using arabinosyluracil (araU), adenine (Ade) and adenosine triphosphate (ATP) as precursors. To this aim, three immobilized biocatalysts involved in the biosynthesis of nucleosides and nucleotides were used: uridine phosphorylase from Clostridium perfringens (CpUP),2 a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP),2 and deoxyadenosine kinase from Dictyostelium discoideum (DddAK).3 Specifically, CpUP catalyzes the phosphorolysis of araU thus generating uracil and α-D-arabinose-1-phosphate. AhPNP catalyzes the coupling between this latter compound and Ade to form araA (vidarabine). This nucleoside becomes the substrate of DddAK which produces the 5’-mononucleotide counterpart (araA-MP) using ATP as the phosphate donor (Scheme 1). Reaction conditions (i.e. medium, temperature, immobilization carriers) and biocatalyst stability have been balanced and optimized to achieve the highest productivity. Vidarabine 5’-monophosphate was obtained in 95.5% conversion. Optimization of the purification step is in progress
    corecore